
High-Level Synthesis Lessons
Understanding structure and appreciating
mother-nature

Rajesh Gupta
University of California, San Diego.

mesl . ucsd . edu

ECSI, Darmstadt September 06

2

Two Observations

#1 Today’s silicon is a lot about
cost and capacity

#2 Silicon architectures matter
Intrinsic Si efficiency ranges by 102-103X
depending upon computation fabric used
(MOPS/W, MOPS/mm2)

MPU: 100 MOPS/W
FPGA: 1-2 GOPS/W
ASIC: 10-20 GOPS/W

16 64b SIMD
Processing Elements

API
Interface

OAK
DSP

16 64b SIMD
Processing Elements

16 64b SIMD
Processing Elements

API
Interface
API

Interface

OAK
DSP

Pad limited die:
200 pins
52 mm2

>1K dies/wafer
$5/partIf done right, there is a space of 100-1000x gain in

Silicon efficiency in hardware realization
Power, Reliability bugs when pushing hard on these

3

But getting there is not cheap
SOC Design Cost Model

$3
42

,4
17

,5
79

$1
5,

06
6,

37
3

$10,000,000

$100,000,000

$1,000,000,000

$10,000,000,000

$100,000,000,000

1985 1990 1995 2000 2005 2010 2015 2020
Year

To
ta

l D
es

ig
n

C
os

t
(lo

g
sc

al
e)

RTL Methodology Only

With all Future Improvements

In
-H

ou
se

 P
&R

Ta
ll T

hi
n

En
gi

ne
er

Sm
al

l B
lo

ck
 R

eu
se

IC
 Im

pl
em

en
ta

tio
n

to
ol

s

La
rg

e
Bl

oc
k

R
eu

se

In
te

llig
en

t T
es

tb
en

ch

ES
 L

ev
el

 M
et

ho
do

lo
gy

Courtesy: A. Kahng & ITRS.

Every generation of CAD researchers dreams to be part
of a generational shift to the high-level.

4

Today, it is called ESL

Means many things
Algorithmic design and implementation
Behavioural synthesis
SoC construction, simulation and analysis
Virtual system prototyping
Function-architecture co-design

Of course, it is (always) really about raising the
level of abstraction for design…

5

The “KoolAid” about High Level

Higher productivity
“designer productivity falls within 6 days/line to 6 lines/day
regardless of the abstraction level”
Higher abstraction level means less coding

Less bugs
“one bug per six lines regardless of the abstraction level”

Improved design quality
Larger scope of design optimizations

Shorter design time
Reuse of IP designs captured in executable specifications

Indeed, several attempts to get this programming right
LISP, ADA, Prolog, Java, and many many variants of C and C++

HLS has been a major preoccupation of the EDA
community since late 1970s..

6

Sample Time Points
(purely from recollection)

1978 McFarland: ValueTrace
1981 Kuck etc: Compiler Opt. POPL
1983 Hitchcock & Thomas: DP Syn.
1984 Gircyz thesis
1985 Kowalski & Thomas: AI
1986 Marwedel: Mimola

Orailoglu,Gajski: Flow Graphs
Parker: MAHA
Tseng & Siewiorek

1987 Trickey: Flamel
Ebcioglu: SW pipelining

1988 Brayton: Yorktown Silicon C.
Thomas: SAW
Ku & DeMicheli: HardwareC
Lam: SW pipelining / Lee: DSP

1989 Goosens, DeMan: loops
Paulin & Knight: FDS
Walker & Thomas

1990 Olympus
McFarland,

Parker, Camposano
DeMan: CATHEDRAL II

1991 Stok, Bergamaschi
Camposano & Wolf book
Hwang, Lee, Hsu: Sched.

1992 Gajski HLS book
Wolf: PUBSS

1994 DeMicheli Book
1996 Knapp Book

7

HLS Vision: Circa 1980s
“From Behavior to Structure”, “From Algorithm to
Circuit”
A very active community of researchers in “High Level
Synthesis”

A compelling vision, neatly laid out problems, tasks
Then what happened?

Answer: The dogs did not like the dogfood.

8

Why? The Dogs and Their Food

A partial answer…
Circuit designer’s did not like the way to get to (known) results

And when they got there, the results were underwhelming
Shifts in design tools and methods do not happen alone..
People (must) change too..

Architects: deal with too many turning knobs
ASIC Implementers: understand and apply what is really important
to optimize (and what is not)? Multiple clocks, rails, domains, …

►Such shifts must be an enabler: new people doing new things.
Gartner will tell you tell you that much

And then something about the quality of results (QoR).

Now for the rest of the story…

9

HL Modeling & Synthesis: A
personal journey over 20 years

My journey started as a circuit designer at Intel c. 1986
Life was ‘Simple’

Simulation tool reproduced hardware behavior faithfully
Circuits hooked together: modularity & abstraction came naturally
DA for designers focused on methodological innovations (split
runs, timing calculators, sanity checks)
Real simple handoff (of printed C-size sheets)
Local verifiability and updates through back annotations

Then things changed
Design became data, and data exploded
Programming paradigm percolated down to the RTL
Designers opened up to letting go of the clock boundary

And we all asked:
Wouldn’t it be fun to program the circuits?! At least, the dumb ones.

10

From HLL to HDL: Semantic Needs

Structural Abstraction
provide a mechanism for building larger systems by
composing smaller ones

Reactive programming
provide mechanism to model non-terminating interaction
with other components, watching, waiting, exceptions

Timing Determinism
provide a “predictable” simulation behavior

Concurrency
model hardware parallelism, multiple clocks

M
id

2

0
0

0
’s

E
a

r
l

y

2
0

0
0

’s
E

a
r

l
y

1

9
9

0
’s

M
id

1

9
8

0
’s

11

Concurrency Experiments:
Example: HardwareC, Stanford circa 1989

Ambitious use of
concurrency

Hierarchically nested blocks
[s1; s2] ; Sequential
{ s1; s2 } ; Data-parallel
< s1; s2 > ; Force-parallel

Focus on Scheduling smarts:
Notions of bounded and un-
bounded delay operations

CDFGs ruled the day
Operational uncertainty captured
in the structure of the model

Memory was (often) an after-
thought

Just another module

12

Lessons Learnt
The Good

Not all CDFGs created equal
For instance: SIF

Match the model granularity to the
problem solving methods
Structural handling of uncertainty

The Bad
Too much concurrency is counter-
productive

In fact, distinguish between
concurrency and simultaneity

High control costs can not be avoided
because of the model generality

► The Ugly
Picked the wrong door on language.

-- IEEE D&T, November 1997

13

HLL to HDL: 3 ways to do it

One: Syntactic Add-on to match new concepts
Process, Module, Signal, [], <>, channel, …

Two: Semantic overloads
L_value = R_value implies…

E.g., an event into future

Three: Neither. Use existing mechanisms
Libraries
Operator overloading
Polymorphism: port/type

Which would you choose?

14

The Era Of Timing, Circa
early 1990s

Lexicon changed from the chip to the embedded system
New ways of looking at the hardware (as an ES)

Entities with temporal interactions with the environment

By now, models did a full circle
From separate timing, function models to Operation-Event graphs to
separate timing and task graphs.

15

Generalized Task Graph
Model

A

B

C

Tokens

Nodes

Nodes = tasks

Edges = communications

Tokens pass along edges
from source to sink

Tokens are channel specific
and once fixed are
indistinguishable

16

Separation enabled ‘Timing
Simulation’

A

B

C

T(b)

T(a)

C isOR/s/d task

Always @(a or b) begin

if (e != old_a) begin

count_a = count_a + 1;

mem[count_a] = a;

end

... (similar change check for b)

if (count_a >= T(a)) begin

count_a = count_a - T(a);

task_c(a, b);

else if (count_b >= T(b)) begin

count_b = count_b -T(b);

task_c(a, b);

end

end

17

Timing Simulation Example

Acceleration, deceleration periods:
normally distributed with mean = 20 sec, dev. = 1 sec

Vehicular response:
normally distributed 10 sec/100 Kmph (10 +/- 4 sec)

Hold speed for >= 2 x acceleration/deceleration period.

18

No token loss by tasks f & g

Distance Traveled

System-level simulations before tasks have been implemented!

19

Timing-Driven High-level
Design Architectural DesignArchitectural Design

Detailed DesignDetailed Design

20

Lessons Learnt

Too much, too little
A lot of detailed specification for solving only a part of the
problem

Or handle an even more complex problem of time budgeting
and constraint decomposition across modules

Especially, at a time when functional verification took on
much increased importance.

Model separation from function too limiting
And does not leverage the key capability of the designers to
leverage function structure for timing

The basic proposition in using HLL was lost
No chance of new formalisms and programming models to
making timing first order.

21

Reactive Programming: Mid
1990s, Scenic

Inspired in part by the success of
synchronous programming in embedded
software

Esterel, Signal / Scade tools etc.
Getting a better handle on “deterministic
concurrency”

Early attempts to synthesize from Esterel
Models crossed path with compilers &
meta-models
Enter Scenic/SystemC

Choice of the OO language
Reactivity: Watching versus Waiting
Libraries not syntax or overloading

Marketed as iterative refinement on HLL
programming

Modules, processes, reactions

CSYN September 10, 1996

Going from C++ to CSYNGoing from C++ to CSYN

Restricted C++ Description

Add reactivity,
clock(s), waiting & watching

Refine data types
- bit true, fixed point
- saturation arithmetic

CSYN Description

CONTROL DATA

CSYN September 10, 1996

Example: W & WExample: W & W

csyn_signal<> a;

wait_until(a == ‘1’);

block;

csyn_signal<> a;

if (a.read() == ‘1’) { }

block;

Blocking Non-blocking

watching (a == ‘1’);

catch (...) {

if (a.read() == ‘1’)
{execption_block }

Con-current Watching

try {

normal_block

}

24

Scenic and UML

Insight: expand model to include multiple types of relationships

1 Association:
unidirectional or bidirectional message passing
manifest themselves at run-time to permit exchange of messages among objects
associations are “structural,” that is, they must be part of the class. Correspondingly objects have
links.
implemented as pointers or references to objects.

2 Aggregation:
an object logically or physically contains another
physical or catalogue aggregation possible

often {shared} constraint used in two separate aggregations
may be recursive : may contain parts that may themselves contain classes of the original whole
(although with different instances)

3 Composition:
aggregation plus owner is responsible for creation and destruction of the contained object
normally implemented as a pointer or reference, or declaration within the class scope

4 Inheritance: generalization or specialization
“is-a-kind-of relationship” that is fundamentally between classes (not invoked through messages)
the derived classes inherit properties from base class but may also extend or specialize them
“or-” or “and-” generalization

5 Refinement: generic or template elaborations

25

The era of structure:
early 2000

Modules,
Boxes,
Containers,
Wrappers,
IP,
Interfaces

Component Composition Frameworks

MOCs, Meta Models, Process Algebra

Processor

I/O

Mem

Software

IP Core

Bus

Separation of Communications, TLMs

Time Granularity in Models: TransactionsTime Granularity in Models: Transactions

•• Models B, C, D and E could be classified as Models B, C, D and E could be classified as TLMsTLMs
»» Many Many manymany qualifications on qualifications on TLMsTLMs: BCA/CA: BCA/CA--TLM, Protocol aware TLM, Protocol aware

TLM, SOC TLM, SOCTLM, SOC TLM, SOC--MA TLM, MA TLM, ……

Source: Daniel Gajski, UC Irvine.

27

Component
Integration, CIL

Split-Level
Interface/BIDL

C++, SystemC

System designer
C

om
piled

Interpreted

BALBOA Composition
Framework

A composition environment
Built upon existing class libraries, to add
a software layer for manipulation and
configuration of C++ IP models
Ease software module connectivity
Run-time environment structure

A SW architecture that enables
composition of structural and functional
information

Current state
SystemC + NS2 + ISS + OS services

28

Example
Instantiate components
Adder a
Register r
connect a.z to r.in

type introspection
a query type
⇒Adder

a query type parameters
⇒DATATYPE (bv10)

a query implementation
⇒add_fast<bv10>

a query ports
a b cin z cout

a.cin query type
bv<10>

Declare interface
Component Adder/interface {
Inport a
Inport b
Inport cin
…
Type parameter (DATATYPE)

}

Declare implementation
Component Adder/Implementation {
DATATYPE (bv10): add_fast<bv10>

…
}

template<class T>
class add_fast: public sc_module {
sc_in<bv10> a;
…

};CIL C++

BIDL

29

Type System in Balboa
Semi-lattice type relationship:

NP-hard to find a match for a netlist
Set P of ports partitioned into k sets (component)
Set S of signals
For each component, with its port vector p, assign a
row from the TAT table such that if there is a signal set
is compatible.
(One-in-Three Mono 3SAT can be reduced to Type
Inference)

Full type resolution is not guaranteed
Solved as a constrained optimization problem

If a component is not typed in the CIL
The SLI delays the instantiation of the compiled internal
object
Interpreted parts of the component are accessible

Verify if types are compatible when a relationship is set
If a compatible type is found, the SLI allocates the
internal object and sets the relationship
If not, the link command is delayed until the types are
solved

Component

Type parameters build
the type availability table

Component
Integration, CIL

Split-Level
Interface/BIDL

C++, SystemC

System designer

C
om

pile d
In te rp reted

Reference: TCAD, Dec 2003

30

Lessons Learnt

Can not sell new ways of doing the same thing
to the same person who was doing it before
Doing new things requires meaningful advance
in new capabilities

E.g., where is support for verification, signoff?

For a new group of people to pick of known
methods, there must be a well defined target of
methods and tools to retrofit

E.g., circuit design exploration by RTLers must bring
circuit design into the RTL lexicon

31

Meanwhile…
Companies found HLS underwhelming

At least, those with the $$ to buy tools

Why? Was it QoR?
Nah…HLS did not address the real problems

E.g., Microprocessor functional blocks are typically
Low Latency: Single or Dual cycle implementation
Consist of several small computations
Intermix of control and data logic

They wanted to start where HLS ended and go
somewhere else

Start with a sequential, multi-cycle specification
Produce highly parallel, single-cycle design

32

Case Study: Intel Instruction Length
Decoder

Stream of
Instructions

Instruction Length Decoder

First
Insn

Second
Insn

Third
Instruction

Instruction BufferInstruction Buffer

33

ILD Synthesis:
Speculate Operations,

Fully Unroll Loop,
Eliminate Loop Index

Variable

Multi-cycle
Sequential

Architecture

Multi-cycle
Sequential

Architecture

Single cycle
Parallel

Architecture

Single cycle
Parallel

Architecture

34

Another Attempt: Parallelizing HLS

Vision
Aggressive & global code motions in an attempt to get
past the QOR issue in HLS

Strategy
Identify really useful parallelizing transformations
Apply coarse and fine grain HL & compiler optimizations

target control flow transformations
“Fine grain” loop optimization techniques for multiple and
nested loops
Mixed IR suitable for fine and coarse grain compiler
transformations (similar to other systems such as SUIF)

Make it accessible through C, SystemC

SPARK: Parallelizing TransformationsSPARK: Parallelizing Transformations

+

+
If Node

T F
Reverse

Speculation

Conditional
Speculation

Speculation

Across Hierarchical
Blocks

_

a

b

c

Operation Movement to reduce impact of
Programming Style on Quality of HLS Results

Increasing the scope of Code MotionsIncreasing the scope of Code Motions
by Inserting New Scheduling Stepsby Inserting New Scheduling Steps

If Node
T F

_ e

BB 0

BB 2BB 1

BB 3

BB 4

+a

+b

_ c _ d

If Node
T F

_ e

BB 0

BB 2BB 1

BB 3

BB 4

+ a

+ b
_ c

_ d
S0

S1

S2

S3

++Resource Constraints

Unbalanced
Conditional

If Node
T F

_ e

BB 0

BB 2BB 1

BB 3

BB 4

+a

+b

_ c _ d

Inserting New Scheduling StepsInserting New Scheduling Steps

If Node
T F

_ e

BB 0

BB 2BB 1

BB 3

BB 4

+a

+b

_ c _ d

If Node
T F

_ e

BB 0

BB 2BB 1

BB 3

BB 4

+a

+b

_ c _ d

Enables Conditional SpeculationEnables Conditional Speculation

If Node
T F

e

BB 0

BB 2BB 1

BB 3

BB 4

+a

+b

_ c _ d
_ _e

S0

S1

S2

•• Insert scheduling steps into Insert scheduling steps into shortershorter conditional branchconditional branch
•• Enables further code compactionEnables further code compaction

SPARKSPARK

 Task Graphs
(HTGs)

+
Data Flow

Graphs

Hierarchical

C Input

Speculative Code Motions
 Chaining Across Conditions

Percolation/Trailblazing
Candidate OpWalker
Get Available Ops

Loop Pipelining Dynamic CSE & Copy Prop

Transformation ToolboxHeuristics
Scheduling and Allocation

PreSynthesis Optimizations

Code Generation BackEnd

HTG Scheduling Walker

SPARK IR

Operation/Variable Binding FSM Generation/Optimiz.

Synthesizable RTL VHDL, Behavioral VHDL & C

Loop Unrolling, Loop Fusion, Loop Invariant Code Motion
CSE, IVA, Copy Propagation, Inlining, Dead Code Elim

Parser Front End

& Resource
Library

Constraints

Resource Binding & Control Synthesis

Transformation Groups:Transformation Groups:
•• PrePre--synthesissynthesis::

–– LoopLoop--invariant code invariant code
motions, Loop unrolling, motions, Loop unrolling,
CSECSE

•• SchedulingScheduling: :
–– Speculative Code Motions, Speculative Code Motions,

MultiMulti--cycling, Operation cycling, Operation
Chaining, Loop PipeliningChaining, Loop Pipelining

•• Transformations applied Transformations applied
dynamically during dynamically during
schedulingscheduling::
–– Dynamic CSE, Dynamic Dynamic CSE, Dynamic

Copy PropagationCopy Propagation

•• Basic Compiler Basic Compiler
TransformationsTransformations: :
–– Copy Propagation, Dead Copy Propagation, Dead

Code EliminationCode Elimination

http://mesl.ucsd.edu/spark

So, that brings us here to 2006

What have we learnt and how do we
go forward?

41

TakeAways
#1 HLS must be an enabler for the designer

Who are we enabling? System Architects? COTS programmers?
Mathematicians?
The needs are real:

Architects have to deal with too many turning knobs
ASIC Implementers: understand and apply what is really important
to optimize (and what is not)? Multiple clocks, rails, domains, …

#2 Address pain points of the identified target
#3 Move in step with the technical needs

HLS was way ahead of the validation curve, even before the designer
was ready to yield the clock boundary

#4 We need to bring the excitement back into the domain
System design is mired in a lot of ‘black art’. Go from art to science:
e.g., new methods to capture and exploit meta-data.

42

Address HL Pain Points

PP1: Components and Compositions
Compositional models and methods for IP

PP2: Correctness, Security
Ensuring and demonstrating correctness, confidence in
design

PP3: Low Power and Power Management
This one is at all levels

PP4: Flexibility, Programmability and Programming
Improve silicon efficiency

PP5: Effective integration with BEOL
Be closer to the project execution paint points.

43

PP3: Power, where is the pain
most keenly felt?

Making Architectural design with power specific decisions
What events do I wake up on and what events to use for scaling v/f?
Policies to move gradually and correctly among power/performance states

Dilemma in binding and allocation of V/F ranges to blocks
Late binding of parameters to technology-specific values
Yet early determination of control of these parameters: architecture, sw

Deciding µarchitectural choices in power gating
E.g., whether the state information is saved explicitly at the
microarchitectural level or whether circuit strategies are used, such as
retention flops on a backup power grid.

Decisions with different area, power, performance/energy
tradeoffs.

Complicated µarchitectural design, mode switching, pipeline design. Need
estimates on energy savings.

Verify if the power state controller is working or not
Ensure functional behavior, ensure compliance (standard-specific power
related behavior, e.g., wakeup interval bounds)

Re-evaluate and/or validate power state decisions at the gate
level

44

Formal Performance
Verification
From PCI Express:

PMG.02.00#10: After successful completion of the L2/L3 ready
transition protocol a Link must transition to L3 when main power is
removed if the system does not provide a Vaux supply. It must not
transition before the main power is removed.

PMG.02.00#02: All power supplies, component reference clocks,
and component’s internal PLLs must be active during L0 and L0s.

PMG.02.00#06: All platform provided power supplies and
component reference clocks must remain active during L1.

45

Power Management Checklist
PMG.01.01#01 Root complexes are required to participate in Link power Yes __ No __

management DLLP protocols initiated by the downstream device.
PMG.01.01#02 Active State Link Power Management using the L0s state must be Yes __ No __

supported by all PCI Express components.
PMG.02.00#01 All PCI Express components must support the L0 active state. Yes __ No __
PMG.02.00#02 All power supplies, component reference clocks, and component's Yes __ No __

internal PLLs must be active during L0 and L0s.
PMG.02.00#03 No TLP or DLLP communication is allowed over a side of a link in the Yes __ No __

L0s state.
PMG.02.00#04 No TLP or DLLP communication is allowed over a link the L1 state. Yes __ No __
PMG.02.00#06 All platform provided power supplies and component reference Yes __ No __

clocks must remain active during L1.
PMG.02.00#08 The L2/L3 Ready transition protocol must be supported. Yes __ No __
PMG.02.00#09 TLP and DLLP communication over a Link that is in L2/L3 Ready is Yes __ No __

prohibited.
PMG.02.00#10 After successful completion of the L2/L3 ready transition protocol a Yes __ No __

Link must transition to L3 when main power is removed if the system
does not provide a Vaux supply. It must not transition before the

main power is removed.
PMG.02.00#11 An upstream initiated transaction targeting a Link in L0sor L1 must Yes __ No __

cause the Link to transition back to L0.

PMG.02.00#15 TLLP and DLLP communication over a Link that is in L2 is prohibited.Yes __ No __
PMG.02.00#16 TLLP and DLLP communication over a Link that is in L3 is prohibited.Yes __ No __
PMG.02.00#19 A component may only consume VAUX power if enabled to do so. Yes __ No __
PMG.03.08#14 When an upstream component receives PM_ENTER_L23_DLLP it Yes __ No __

must reply with the PM_Req_ACK DLLP.
PMG.03.09#04 Upon receiving a PM_Enter_L1_DLLP an upstream component must Yes __ No __

complete all outstanding TLPs and block scheduling of new TLPs.
PMG.03.09#05 The upstream component that received a PM_Enter_L1_DLLP must Yes __ No __

send a PM_Request_Ack_DLLP downstream once all its outstanding
TLPs have completed and it has accumulated at least the minimum
number of credits required to send the largest possible packet for

any FC type. It must send this DLLP continuously until it receives an
electrical idle set or observes its receive lanes enter the idle state.

PMG.03.09#07 When an upstream component observes its receive lanes enter the Yes __ No __
electrical idle state it must stop sending PM_Request_Ack DLLPs,
and disable its Link layer, send one electrical idle ordered set and

bring its transmit Lanes to electrical idle.
PMG.03.09#09 Once both ends of a link are in the L1 state the upstream component Yes __ No __

must suspend operation of Flow Control Updates.
PMG.03.10#01 An upstream component must detect when a packet is targeted at a Yes __ No __

downstream Link in the L1 state and initiate the transition of the link to L0

Page 1 of 3
Almost the same
size as System
Architecture
Checklist.

3x the electrical
requirements.

Can not all be
done by FV tools
that do not have
a good handle on
voltage levels,
on/off domains,
back biasing, …

46

Reflection and Introspection: A
HW Guy’s Way of Looking At It

Component:
A unit of re-use with an interface and an implementation

Meta-information:
Information about the structure and characteristics of an
object

Reification:
A data structure to capture the meta-information about the
structure and the properties of the program

Reflection:
An architectural technique to allow a component to provide
the meta- information to himself

Introspection:
The capability to query and modify the reified structures by
a component itself or by the environment

5 ports
adder

47

Emerging ‘meta data methods’
Internet programming has many shared needs

Programming with data/methods from diverse sources, semi-structured data, platform
independence, lightweight

Focused on “data” (not document) transfers through XML schemas
Self-documenting/extensible “tags”, extended through nesting

In graph representation, there is no distinction between data and schema
Simplest XML is a labeled ordered tree with labels on nodes, and possible data values
at the leaves.

Schema extracted through Data Type Definitions
A DTD is an extended CFG with no terminals:

Nonterminals are tags in the XML parse tree
A document satisfies a DTD if it is a derivation of the extended CFG

Not quite a data type in a programming language:
Values are not constrained (all values as strings);
Unordered things are difficult;
Inability to separate type of an element from its name.

New flexible types and schemas, e.g., regular expressions over trees =>
Ability to talk “about” data / queries through reflection

<dealer> <UsedCars> <ad>
<model>Honda</model><yr>92</yr>
</ad></UsedCars>
<NewCars> <ad>
<model>Prius</model></ad></NewCars
> </dealer>

root: dealer
dealer UsedCars, NewCars
UsedCars ad*
NewCars ad*
ad modelyear | model

48

Summary
The current movement towards HLM through programming
advances holds the promise of modeling and methodology
convergence from chip design to embedded systems (software)
design

Language-level modeling advances now touching new compositional abilities
through innovations in design patterns and infrastructure capabilities

However, such advances go hand-in-hand with advances in
verification and synthesis tools

Yet, good IP-model composability still very much out of reach
New models and methods needed to

Capture design, design constraints, meta-information
To validate compositions, to drive design tasks that utilize meta-information.
To address power, reliability related questions at level where they can have
most impact on the system architecture.

