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Abstract
Technology scaling in microelectronics has reached limits that are
resulting in increasing variation in component design and perfor-
mance characteristics. Chips and systems comprising of such com-
ponents are starting to exhibit a rise in process-induced failures and
soft errors. Conventional design time solutions such as conserva-
tive guardbands to hide such variations are increasingly not viable
for cost and performance reasons. As an alternative, researchers
have sought to expose hardware fault information to the software
stack and enable a programmer to use the fault information dur-
ing software development. In this work, we propose the use of
Software Recovery Blocks (SRB) as a programming construct that
enables a programmer to provide application-specific error recov-
ery code. Recovery comes in two modes: a) rerunning or b) dis-
carding the erroneous computation. While rerunning comes at a
performance overhead, discarding erroneous computations could
result in degraded output quality, giving a user two extreme op-
erating points on the performance-quality trade-off curve. In or-
der to exploit intermediate performance-quality trade-off points,
this work proposes approximate recovery which is particularly
beneficial to approximate-computing applications. Such applica-
tions offer a natural tolerance to errors and the work introduces a
SRB extension called Application-Specific Approximate Recovery
(ASAR). ASAR provides 3.8%–29.9% speedup relative to rerun for
six approximate-computing applications. Furthermore, the work
proposes a hybrid recovery mechanism which allows a user to set
desired output quality and exploit the performance-quality trade-
off curve at a finer-granularity. Hybrid recovery uses a mixture
of ASAR and rerun-based recovery to demonstrate 1.5%–11.6%
speedup compared to only rerun, while maintaining user-specified
output quality.

1. Introduction
As technology scaling results in ever smaller components it be-
comes expensive to produce reliable hardware. Components such
as transistors no longer behave precisely with tight tolerances as
to their timing or power consumption. Emerging hardware ex-
hibits performance and power uncertainties – the effects commonly
termed variability [16, 21]. More aggressive process technology
nodes in the coming years will see increased variability, thus in-
creasing fequency of voltage droops, timing errors, and soft er-
rors [1, 22]. To mask the effects of variability-induced uncertain-
ties and ensure error-free operation device and system designers
use conservative voltage and frequency guardbands. These guard-
bands already occupy over 40% of the cycle time and lead to high
active and sleep power draw. Alternatives to design guardbanding
are an active area of research in microelectronic circuit design.

Hardware solutions include techniques such as redundancy [28],
circuit-level techniques [13, 29], and non-trivial design-time ap-
proaches which aim to reduce architectural vulnerability fac-
tors [33]. Some of the popular software techniques involve re-
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Figure 1: (a) DVFS for single core (b) Migration for multi-core.

dundant code execution [5, 17, 40, 46], checkpointing & re-
execution [23], and compiler-driven vulnerability reduction [39,
48]. None of these techniques is a panacea: software-only solu-
tions suffer more than 2x performance and memory overhead by
duplicating every computation necessary for error detection. On
the other hand, hardware-only solutions aim to mask every error
and provide software an illusion of error-free execution that comes
at a high overhead costs.

Most of the hardware and software approaches maintain a clear
separation where all hardware errors are masked from the software.
This strict separation is expensive and unnecessary, especially for
approximate-computing applications. Approximate-computing ap-
plications including search, multimedia, financial, and big-data
have become key workloads that heavily influence the semiconduc-
tor industry. Conceptually, such programs have a vector of elastic
outputs, and if execution is not 100% accurate, the program can still
produce acceptable output quality from a user perspective [7, 10].
Relaxing the separation between hardware and software allows
users to select one of many operating points on the performance-
output trade-off curve offered by approximate-computing applica-
tions.

Our approach to addressing errors caused by variability is to
make such processing part of existing software mechanisms for
handling error. Therefore, we propose to expose hardware error in-
formation to the software akin to exception handling. For example,
today hardware exposes a divide-by-zero or memory-access viola-
tion which allows software to terminate gracefully. We seek instead
ways to recover from variability induced errors to ensure contin-
ued system operation. To achieve this goal, we extend and evaluate
the use of software recovery blocks (SRB) for handling variability-
induced hardware errors. For the code regions enclosed by SRB,
hardware may be operating in an “unsafe” regime due to inadequate
guardbands, for instance, a lower voltage and/or higher frequency.
Any resulting errors in computation are exposed to the software as a
part of SRB semantics. In case of an error, the runtime can a) rerun
the code to ensure 100% accuracy, b) approximate the computation
to ensure partial recovery, or c) discard sub-computations to ignore
the error completely. Based on user provided output acceptability
and algorithmic restrictions, the application developer can choose
one of the above recovery options (a, b, and c) or a hybrid recovery
which mixes two recovery options.

This way, approximate-computing applications can be parti-
tioned into sections of code that require error-free operation and
sections that can tolerate varying degrees of error. We label the
former as critical and the latter as non-critical as shown in Fig-
ure 1. The non-critical code region is enclosed inside SRB to en-
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Figure 2: (a) Software Recovery Blocks (SRB) to handle programing
faults (b) Extension of SRB to handle hardware errors.

able unsafe mode of operation. The unsafe modes of operation can
be realized using adaptive DVFS [24] (Figure 1a), dual-voltage op-
eration [14], and migrating execution between multi-cores [26, 45]
(Figure 1b). The technique allows us to exploit the unsafe regions
to either accelerate execution or run at reduced power. For exam-
ple, we could either change DVFS settings at the SRB boundaries,
or migrate between safe and unsafe cores. In this work we make
three contributions:
I. We propose an extension of Software Recovery Blocks (SRB)
to Application-Specific Approximate Recovery (ASAR) which is
particularly suitable for programming in a language with support
for exception handling. ASAR extends the conventional Try-Catch
mechanism, a high-level programming construct, to detect hard-
ware errors and provide approximate recovery choices in software.
II. We demonstrate that ASAR achieves 3.8%–29.9% performance
improvement relative to rerun and 5.4–84.3 percentage point in-
crease in output quality relative to discard for six approximate-
computing applications. Thus, ASAR provides a user with an in-
termediate operating point on performance-quality trade-off curve.
III. We introduce hybrid recovery combining ASAR and rerun-
based recovery which allows user to specify a threshold on output
quality. We show that hybrid recovery achieves an average 1.5%–
11.6% speedup relative to rerun with an output quality of greater
than user-specified threshold. Hybrid recovery enables application
programmer to explore the performance-quality trade-off curve at
a finer granularity.

2. Software Recovery Blocks (SRB)
Software recovery blocks (SRB) enable an application program-
mer to respond to software faults and are a well-known program-
ming paradigm in real-time embedded systems. Traditional SRB
implementation supports fault-tolerant programming and excep-
tions handling [37]. A typical recovery block structure is shown in
Figure 2a. This style of programming ensures recovery from possi-
ble faults in the design of software components. Faults are detected
using software acceptance tests and the program tries to ensure
acceptability using primary module. If the primary module
fails the acceptability test, the execution switches to alternative
module.

SRB along with hardware support enables graceful handling of
software faults, such as segmentation and divide-by-zero faults. For
example, in an event of segmentation fault, software attempts to ac-
cess an out-of-range memory segment. Thus hardware raises a trap
and software exists gracefully. Faults such as segmentation faults
are software-induced where hardware detects and assists software
to take corrective measures. A system that doesn’t have support to
handle such faults may experience a system crash requiring reboot,
loss of data, and silent data corruptions.

We propose extending the SRB mechanism, using Try-Catch
mechanism, for a system that not only exposes software but also
hardware faults similar to relax-recover mechanism by Kruijf et
al. [11]. A software developer can use hardware error informa-
tion and application-specific knowledge to recover from timing er-
rors. Figure 2b shows the proposed Try-Catch mechanism, Try
block executes the primary module using unsafe mode at a faster
execution speed and higher probability of encountering hardware
errors. If an error occurs during the Try block execution, hard-
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Figure 3: (a) Rerun mechanism results in performance overhead of
close to 2x. (b) Discarding erroneous computation may result in un-
acceptable output quality (QoS).

ware generates an interrupt. The software attempts to recover from
the error using the recovery module – implemented inside the
Catch block. The Catch block runs at safe operating conditions to
ensure error free execution. Kruijf et al. evaluate two implementa-
tions for software error recovery: rerun and discard [11].

Rerun Mechanism. In the rerun or re-execution mechanism,
we run the Try block code inside the Catch block until the hard-
ware error subsides. This software compensation technique is anal-
ogous to multiple issue instruction replay [6]. Rerun ensures per-
fect output quality (QoS). However, rerun-based recovery comes
at execution time overhead. The overhead with the single rerun for
WordCount (WC), K-Means (KM), and A2Time (A2T) is shown in
Figure 3a. The x-axis shows the rate of Try block failure and the
y-axis is the total execution time normalized to the runtime of error-
free execution. Execution time overhead increases with increasing
failure rate with a worst case overhead of 60% for A2T and an av-
erage overhead of 27.7%.

Discard Mechanism. In the discard mechanism, sub-
computations by an erroneous Try block are dropped. The Catch
block is programmed to account for the number of dropped sub-
computations which can be used to adjust the final result. Although
the discard mechanism does not incur a recovery cost, we observe
a significant degradation in the output quality (QoS), as shown in
Figure 3b. Our preliminary investigation reveals that the discard
mechanism results in best performance at the cost of potentially
unacceptable degradation in QoS. Even low error rate of 1% intro-
duces QoS drop of 15% for A2T. We observe an average QoS drop
of 27.33% and a maximum of 44%.

The rerun and discard mechanisms provide a direct way to im-
plement Try-Catch. However, these mechanisms operate at two
extremes on the performance-quality trade-off curve. Our exten-
sion to software recovery block, described in the next section, pro-
vides a software programmable mechanism to exploit intermediate
performance-quality trade-off points for approximate-computing
applications.

3. Application-Specific Approximate Recovery
We extend the SRB mechanism described in Section 2 to explore
intermediate performance-quality trade-off points using approxi-
mate recovery. The use of a particular approximate recovery tech-
nique such as sampling, interpolate, and reuse is specific to the ap-
plication’s algorithm. Hence, we propose and evaluate Application-
Specific Approximate Recovery (ASAR) to provide an approximate
recovery alternative. ASAR provides a mechanism that lies in be-
tween two extreme recovery options, i.e. rerun and discard, target-
ing approximate-computing applications which can operate reliably
by trading output quality for performance.

In approximate-computing, the program execution is composed
of two parts, a critical part and a non-critical part [8, 14, 41]. The
critical part mostly consist of setup code, configurations, system
calls and I/O operations. The critical code sections cannot toler-
ate errors and are not good candidates for software-based recovery.
Hence, critical code sections must run using safe mode to ensure
error-free operation. The non-critical code sections should be side-
effect free sub-computations (idempotent regions) which mostly in-
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Figure 4: (a) On average applications have 86% of dynamic non-
critical code which can be executed at aggressive operating point. (b)
Application-specific approximations. Sampling [WC, MC], Interpolate
[A2T, FIR], and Reuse [KM, SOR, Histo, PR]

clude hot code regions, or inherently error-tolerant floating point
operations. Several compiler-based automated techniques can be
employed to ensure idempotent property for non-critical code sec-
tions [11, 12, 44]. The impotence of non-critical regions is also es-
sential when using the rerun and discard recovery techniques. Thus,
non-critical code section can be enclosed inside a Try block to run
using unsafe mode in order to achieve higher performance and/or
lower power. In case of an error, the Catch block recovers using
rerun (paying maximum recovery overhead) or discard (suffering
maximum QoS degradation), as shown in Section 2. Because non-
critical code sections do not have to be precise, an approximate
software implementation can reduce both the recovery overhead
and QoS degradation relative to the rerun and discard methods.

Critical vs. Non-critical code. Performance and energy gains
by execution under unsafe operating conditions for non-critical
code regions are only possible if applications spend substantial por-
tion of their time in non-critical regions. Figure 4a shows the dy-
namic ratio of the critical vs. non-critical code normalized to the
total execution time for eight applications. Six out of eight applica-
tions, WordCount (WC), K-Means (KM), SOR, MonteCarlo (MC),
Histogram (Histo), and PageRank (PR) spend 90% of their time in
non-critical code region. Ranger et al. [38] observe similar ratios of
critical vs. non-critical code sections for WordCount, K-Means and
Histogram. A2Time (A2T) and FIR spend 30% and 75% of their
time in non-critical region respectively. A2T has significant setup
computations and FIR has instructions that arrange coefficients be-
fore every call to non-critical code section. Overall, we observe
that eight applications spend 86% of their total execution time in
the non-critical regions. Thus, accelerating non-critical regions, via
unsafe modes, for these applications can potentially result in per-
formance and energy gains.

The non-critical code region executing under unsafe condi-
tions may encounter an error. To recover from the error the rerun-
based recovery re-execute the non-critical code inside Catch block
using safe operating conditions which amounts a substantial re-
covery overhead. In order to reduce the software recovery time
we introduce application-specific approximate recovery (ASAR).
We implement ASAR using sampling (samp), interpolation (inter),
and reuse to cover all eight applications used in this study. The
core mechanisms presented in this work are not restricted to the
above three approximate recovery techniques, and an application
developer can implement their choice of approximate recovery. In
our ASAR implementation, Try-Catch blocks can be considered
as process nodes viewed from a standard data-flow programming
paradigm [18]. Try-Catch consumes input tokens and produces
output tokens. During the process neither Try nor Catch saves
any information so they are called stateless data processing nodes.
Figure 4b shows the approximate recovery overhead normalized
to rerun-based recovery of non-critical code region. Lower the bar
faster is the approximate implementation of the non-critical code
region.

ASAR Sampling (ASARs). Figure 5a shows ASAR using sam-
pling. The Try block executes a process node foo which consumes
four input tokens. The Catch block uses a sample of the total input

Try	{	foo(																	)}	

Catch{	foo(								)}	

	1		2		3		4	

	2		4	

a)	ASAR	sampling	

Try{O[i-1]}	

Catch{O[i]=inter(O[i-1],		O[i+1])}	

Try{O[i]}	 Try{O[i+1]}	

b)	ASAR	Inter	
Catch{O[i]=RB[i]}	

Try{O[i];	RB[i]=O[i]}	

c)	ASAR	reuse	
Figure 5: Basic structure of Try-Catch blocks using approximation.

tokens, two in the example. Sampling is a widely popular approxi-
mation technique for multimedia [30] and databases [2].

We utilize sampling-based approximation technique for two
applications, WC and MC. The first two bars in Figure 4b show
a 50% reduction in execution time of non-critical code section
using approximation via ASARs. Hence, in the case of an error,
the Catch block using ASARs recovers failed Try block in half
the time compared to rerun.

ASAR Interpolate (ASARi). Figure 5b shows ASAR using in-
terpolation. Try blocks process a stream of input tokens (i-1, i, and
i+1) to produce a stream of output tokens (O[i-1], O[i], and O[i+1]).
In case a process node, Try {O[i]} block in Figure 5b fails, the exe-
cution moves to the Catch block. The Catch block employs a user-
defined interpolate function (inter) which uses previous output to-
ken, O[i-1], and triggers the future process node, Try {O[i+1]}, to
use the next output token i.e. O[i+1]. The simplest interpolate func-
tion averages O[i-1] and O[i+1] to approximate O[i]. Interpolation-
based approximation is well-suited for DSP algorithms which oper-
ate on continuous time-domain signals. Whatmough et al. present
hardware-based interpolation using pipeline lookahead to recover
from errors for DSP accelerators [47]. We implement and evaluate
ASARi to accelerate software-based recovery for A2T and FIR,
two DSP applications used in this study. The second and third bars
in Figure 4b show 40% and 83% reduction in execution time of the
non-critical code section using ASARi for A2T and FIR, respec-
tively.

ASAR Reuse (ASARr). Figure 5c shows ASAR using reuse. A
reuse buffer element is initialized for every new process node and
every time a Try block processes input i successfully the result
from the current iteration is stored in reuse buffer (RB[i]). In case of
an error, the output token O[i] is assigned using the corresponding
value in the reuse buffer. Reuse-based recovery is applicable to
iterative benchmarks and applications with high degree of input
locality such as multimedia [3].

We implement reuse-based approximate recovery for four ap-
plications, as shown by last four bars in Figure 4b, two iterative
applications (KM and PR) and two applications with high input lo-
cality (SOR and Histo). K-Means is a clustering algorithm where
input i to the Try block is a point in space and the output O[i] is
a label to one of the available clusters. In every iteration, the K-
Means algorithm re-assigns all the points to the closest cluster. In
case of an error the Catch block can re-assign the point to the clus-
ter from the previous iteration. PageRank implements reuse similar
to K-Means. For SOR and Histogram, the reuse buffer holds the
output token of the nearest input. K-Means and SOR show 82% and
26% reduction in execution time of non-critical code section using
ASARr . Reduction in execution time for Histogram and PageRank
using ASARr is negligible or negative. The execution time of the
original implementation of non-critical code region for Hsitogram
and PageRank use the same number of instructions as reading from
the reuse buffer. Hence, replacing rerun which re-executes the orig-
inal implementation of non-critical code in the Catch block with
approximate recovery won’t result in reduction in recovery time
for Histogram and PageRank. For the rest of the paper we will dis-
cuss and evaluate the first six applications excluding Histogram and
PageRank.

3.1 Hybrid Recovery (ASAR+Rerun)
ASAR provides reduced recovery time relative to rerun and better
output quality relative to discard. Using ASAR to recover failed
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Figure 6: ASAR vs. Rerun: Execution time and output quality of ASAR vs. rerun. ASAR error recovery alternative such as WC, MC, KM and FIR is
much lower with ASAR compared to rerun.

Try block provides user with an alternative option in between
two extremes: rerun (worst performance, best quality) and discard
(best performance, worst quality). ASAR results in faster recovery
times relative to rerun and improved output quality relative to
discard. However, it only provides one more operating point on
the performance-quality trade off curve. Additionally, using only
approximate recovery may also result in an unacceptable output
quality. Hence, we propose a hybrid recovery mechanism which
uses both rerun and approximate recovery via ASAR. The ratio in
which ASAR and rerun are triggered is called approximation ratio
and is selected using quality of service model.

Quality of Service Model (QoSmod). The QoS requirements
are defined based on the quality of output or timing deadlines [3,
7, 30, 49]. To meet the QoS requirements, a model derives rules
for selecting between rerun and ASAR block. In other words, the
QoS model (QoSmod) assists runtime determine approximation
ratio in order to meet the desired QoS requirement. The following
subsections, we describe the details of the QoS model generation
and utilization, as shown in Figure 7.

QoS Model Generation. The upper dashed block in Figure 7
encloses the Qos model generation process. We generate QoSmod

by executing an application for a wide range of Try block failure
rates (fi) and approximation ratio (rj). The failure rate fi repre-
sents percentage of Try blocks which fail due to unsafe operation
and approximation ratio rj determines how many of failed Try
blocks recover approximately via ASAR vs. rerun. We run exper-
iments for each pair of (fi, rj) on training inputs. For each exper-
iment, the output is compared with the golden output. The golden
output is the output of error-free execution (fi = 0). The final out-
put of the QoS model generator is a discretized table QoSmod with
QoS values for each combination of fi and rj. We use a coarser
granularity Try block failure rate and approximation ratio to reduce
the profiling time one-time QoSmod generation.

QoS Model Utilization. The runtime takes as input the gen-
erated QoSmod and user specified QoS threshold (QoSthd), as
shown by the lower dashed block in Figure 7. The runtime fail-
ure rate can be estimated using standard hardware monitor detec-
tors [6] and/or hardware error models [11, 42]. For the estimated
Try block failure rate and user specified QoS threshold we select
an approximation ratio to ensure observed QoS (QoSobs) greater
than QoS threshold (QoSthd). Our results in Section 4 confirm that
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Figure 7: Hybrid recovery (ASAR + Rerun) and QoS modeling.

QoS model ensures QoSobs is always greater than QoSthd for test
inputs (different from training inputs) and unseen finer-granularity
failure rates. Thus, using QoSmod and hybrid recovery enables a
user to specify an acceptable output quality threshold and explore
various points on performance-quality trade-off curve.

4. Experimental Results
We use six applications from the embedded and DSP domain to
evaluate ASAR and hybrid recovery. Two applications (WordCount,
K-Means) from Phoenix++ [43], two (A2Time and FIR) from the
EEMBC [36] suite, and two (MonteCarlo and SOR) from Sci-
mark2 [34]. Applications are compiled using GCC 4.6.3 and run
on a Linux machine with an Intel core i5. We measure the num-
ber of cpu cycles spent in critical, non-critical, and recovery code
regions. We refactor the code to employ Try-Catch blocks. We
implement Catch block using four recovery mechanisms; rerun,
discard, ASAR, and hybrid recovery for all six applications. We
simulate random Try block failures to simulate the unsafe mode
of operation. On average we assume Try block fails in the mid-
dle of unsafe execution. Hence, for each failed Try block we add
half the number of failed Try block cycles plus recovery overhead
cycles. In the following subsections, we compare the performance
and output quality (QoS metric) for the four recovery mechanisms.

4.1 Application-Specific Approximate Recovery (ASAR)
Figure 6 shows the performance and output quality for six applica-
tions using ASAR. The x-axis represents the rate of Try block fail-
ure, the left y-axis shows the execution time, normalized to the run-
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Figure 8: Hybrid vs. Rerun recovery: Hybrid recovery uses ASAR and rerun-based recovery based on a approximation ratio to explore the entire
performance-quality trade-off curve. For all six applications hybrid recovery maintains observed QoS above a user specified threshold and runs
faster than pure rerun-based recovery.

ASAR Hybrid (ASAR + Rerun)
QoS Performance QoS Performance

Loss (%) Improvement (%) Loss (%) Improvement (%)
Benchmark Avg Max Avg Max Avg Max Avg Max

WordCount(WC) 19.6 38.8 24.8 53.6 12.2 21.3 11.6 21.7
MonteCarlo(MC) 15.7 31.1 13.7 26.5 5.7 12.4 6.3 15.5
SOR 19.8 22.7 7.5 14.4 18.8 20.1 3.9 4.1
K-means(KM) 12.2 21.3 29.9 69.5 6.2 13.0 8.1 16.9
A2time(A2T) 5.9 9.8 3.8 6.2 5.9 8.6 1.5 2.2
FIR 3.0 6.1 5.7 18.8 2.9 4.7 5.8 9.0

Table 1: Average and maximum QoS loss and performance improve-
ment for ASAR and Hybrid recovery.

time of error-free execution, and the right y-axis shows the output
quality using the QoS metric. The lines on each subgraph show the
normalized execution time measurements. Approximate recovery
via ASAR performs better than rerun-based recovery for all six ap-
plications. The average reduction in recovery overhead with ASAR
relative to rerun is highest for WordCount, K-Means, MonteCarlo,
and FIR. These applications spend substantial amount of their time
in non-critical code region so the impact of ASAR is more pro-
nounced. A2Time and SOR show only 3.8% and 7.5% reduction in
recovery time relative to rerun. The gap between ASAR and rerun
performance widens with the increase in the rate of Try block fail-
ure because at higher Try block failure rate faster approximation is
employed more frequently. The reduction in performance overhead
ranges from 3.8% to 29.9%. For all six applications the QoS loss
increases monotonically with the increase in Try block failure rate
except for applications which are inherently random. MonteCarlo,
an application that employs a randomized algorithm, computes the
value of π by randomly choosing points in a two dimensional plane.
The inherent random nature of the application attributes to the non-
monotonicity in the QoS loss. We observe a maximum QoS loss of
38.8%. The average and maximum QoS loss and performance im-
provement relative to the rerun method for each application using
ASAR are also listed in Table 1.

Figure 6 is also used to generate QoSmod for hybrid recovery.
We generate QoSmod for seven coarser-granularity Try block fail-
ure rates fi ∈ [1%, 5%, 10%15%, 20%, 25%, 30%]. This range of
failure rate is representative of variability-induced hardware fail-
ures [10, 35].

4.2 Hybrid Recovery using QoSmod (ASAR + Rerun)
ASAR significantly reduces error recovery overhead (6.2%–69.5%
at maximum) compared to rerun-based error recovery. However,

it suffers from variable levels of QoS loss. ASAR-only recovery
cannot guarantee a bound on the final application QoS. In order to
address this issue and explore performance-quality trade-off curve
at a finer-granularity, we propose a hybrid recovery (ASAR + Rerun)
mechanism. In this subsection, we evaluate the effectiveness of
hybrid recovery using QoSmod.

The execution time and QoS quality with hybrid recovery for
all six applications are shown in Figure 8. All axes have the same
units as Figure 6. The first horizontal line at the top of each sub-
graph represents the perfect QoS achieved using rerun-based recov-
ery or error-free execution. The second horizontal shows the QoS
threshold (QoSthd) specified by the user. We test our QoSmod for
a much finer-granularity of unseen failure rates (1%--50%). The
wider failure rate explores more aggressive near-threshold opera-
tions. We use test inputs for the results shown Figure 8 which are
different from training inputs used for Figure 6.

The hybrid recovery mechanism attempts to conservatively
match a characterized point in QoSmod and selects an approxima-
tion ratio. The results show that hybrid recovery is able to maintain
observed QoS (QoSobs) greater than the threshold (QoSthd) for all
applications. The performance improvement with hybrid recovery
depends on the following factors: 1) ratio of critical vs. non-critical
code, 2) aggressiveness of non-critical code execution or the fail-
ure rate of Try block, and 3) the QoS thresholdQoSthd.QoSthd of
100% will not result in any performance improvement because the
hybrid recovery will select approximation ratio of zero to maintain
the perfect output quality. In order to demonstrate the effective-
ness of hybrid recovery we select QoSthd in the range of 80% to
98% for different applications. However, the user can specify any
QoSthd to obtain a specific point on performance-quality trade-off
curve. For a failure rate of 1%–50%, we observe a maximum QoS
loss of 21.3% with a maximum error recovery speedup of 21.7%
over six applications, as shown in Figure 8 and Table 1.

4.3 Discard Recovery
In this subsection, we evaluate the discard mechanism to recover
from failed Try blocks. The execution time and the QoS for six
applications using the discard mechanism are shown in Figure 9.
The two horizontal lines at the top of each subgraph show the
perfect QoS using rerun-based recovery and user-specified QoS
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Figure 9: Discard recovery mechanism performs the fastest among rerun, ASAR, and hybrid recovery, however, for all applications discard fails to
keep QoS (output quality) above the user specified threshold.

threshold (QoSthd), same as in Figure 8. The discard mechanism
achieves the highest performance improvement with a range of
30%–70% faster execution time relative to ASAR. However, the
observed QoS (Discard) of output falls below the QoS threshold
(QoSthd). The Try block failure rate at which the QoS drops below
QoSthd is called cutoff failure rate (fc). Some applications exhibit
fc of as low as 1%, for example MC and A2T. Applications such as
MonteCarlo doesn’t support discard-based recovery and dropping
a sub-computation deters the algorithm to compute the final answer
resulting in 100% QoS loss. Overall, the discard mechanism suffers
from QoS loss ranging from 16% to 100%. These drawbacks limit
the usage of the discard scheme if the user requires strict guarantees
on output quality.

5. Related Work
Approximate-computing domain offers an opportunity to tradeoff
output quality for performance and/or energy [9, 15, 20, 32]. Rinard
et al. propose program transformations for approximate-computing
trading output quality for increased performance under error-free
environment [30, 31, 50]. Relay [8] is a programming language
that enables developers to provide bounds on probability of error
given an output quality executing under unsafe modes. Green [4]
proposes an online monitoring system to trade off quality of ser-
vice for reducing in energy consumption. Kulkarni et al. propose
under designed multiplier architecture by approximate circuit im-
plementation of multiplier blocks to gain speed in lieu of quality
for image processing applications [25].

EnerJ [41] is a programming language supporting disciplined
approximate computation. It lets programmers mark critical and
non-critical code sections at an instruction granularity. Truffle [14],
a dual-voltage micro-architecture design, supports mapping of ap-
proximate EnerJ programs through ISA extensions. Truffle applies
a high voltage (safe mode) for critical operations and a low voltage
(unsafe mode) for non-critical operations. Truffles demonstrate up
to 43% energy saving by using dual-voltage operation which in-
curs no overhead for transition between safe/unsafe modes for stat-
ically partitioned code in to critical and non-critical regions. ERSA
isolates the execution of iterative algorthims in to critical and non-
critical code at a coarser granularity by separating control-intensive
tasks from data-intensive tasks [27]. While ERSA employs soft-
ware checks on sub-computations to ensure bounds on execution
time and final output, Truffle relies on the programming language
support to provide safety guarantees and doesn’t employ recovery
for the non-critical executing under unsafe mode. Relyzer [19] is a

resiliency analyzer which can help prune fault sites up to five or-
der of magnitude and enable a software developer to locate sites
vulnerable to SDCs.

Relax proposes a compiler/architecture system to expose hard-
ware errors during unsafe non-critical code execution and allow
software-based recovery [11]. Relax employs software recovery us-
ing rerun (worst performance, best quality) and discard (best per-
formance, worst quality). ASAR is an extension for a Relax-like
system which provides a user with an approximate recovery (good
performance, good quality) alternative in between rerun and dis-
card. We further propose a hybrid recovery mechanism which al-
lows exploiting the performance-quality trade-off curve at much
finer granularity.

6. Conclusion
We propose ASAR, application-specific approximate recovery,
scheme that enables re-factoring a program in critical and non-
critical code. The critical code is sought to perform exactly as con-
ventional software whereas the non-critical code enables the pro-
grammer to specify application-specific flexibility. Together, these
can be used in an approximate computing system model. This low-
ers the cost of software-based error recovery relative to rerun by
using an approximate alternative. To guarantee the output accept-
ability and explore the performance-quality curve at a finer granu-
larity we propose a hybrid recovery mechanism. Hybrid recovery
uses a well characterized QoS model and a mixture of available
software-based recovery schemes. We implement an instance of hy-
brid recovery using ASAR and rerun recovery mechanism. We also
characterize a QoS model using training inputs and show that the
proposed hybrid recovery can operate at any intermediate point on
the performance-quality trade-off curve for test inputs. Our results
demonstrate that hybrid recover provides 1.5%–11.6% faster exe-
cution time relative to the rerun mechanism and guarantees an out-
put quality greater than the user-specified threshold. We also show
that the discard mechanism reaches on average 30%–70% faster
execution relative to ASAR, but could suffer from an unacceptable
QoS degradation.
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