
Parallel Co-simulation Using Virtual Synchronization
with Redundant Host Execution

Dohyung Kim† Soonhoi Ha§ Rajesh Gupta†

†Department of Computer Science and Engineering §School of Computer Science and Engineering
University of California, San Diego, USA Seoul Nation University, Korea

{dhkim, rgupta}@ucsd.edu sha@iris.snu.ac.kr

Abstract
 In traditional parallel co-simulation approaches, the

simulation speed is heavily limited by time synchroniza-
tion overhead between simulators and idle time caused by
data dependency. Recent work has shown that the time
synchronization overhead can be reduced significantly by
predicting the next synchronization points more effec-
tively or by separating trace-driven architecture simula-
tion from trace generation from component simulators.
The latter is known as virtual synchronization technique.
In this paper, we propose redundant host execution to
minimize the simulation idle time caused by data depend-
ency in simulation models. By combining virtual synchro-
nization and redundant host execution techniques we
could make parallel execution of multiple simulators a
viable solution for fast but cycle-accurate co-simulation.
Experiments show about 40% performance gain over a
technique which uses virtual synchronization only.

1. Introduction

Our focus is on efficient simulation of complete sys-

tems consisting of multiple concurrent components includ-
ing multiple processors. Typically, the simulation of such
systems consists of multiple simulators connected to each
other reflecting component interactions. The efficiency of
the overall system simulation is strongly affected by the
extent of the inter-simulator interactions. Further, to re-
duce simulation time, we seek to build such simulation
models for execution on a multi-processor system, hereto
referred to as the simulation "host".

In co-simulating multiple processors, each simulator
should check events from all other simulators at every
clock cycle. It guarantees that each simulator receives
events from other simulators in the chronological order.
Otherwise, causality errors may occur where a simulator
receives a past event after it advances its local clock. To
synchronize the advancement of local clocks of simulators,
the conservative approach is to exchange control mes-
sages between simulators at every clock increment. Then
this time synchronization overhead dominates the overall
simulation time as the number of simulators increases or

the simulator speed grows. For instance, if IPC overhead
for unit message exchange between two simulators is lar-
ger than 10us, this limits simulation speed below 100K
cycles/sec. Actual simulation performance is much worse.

Some recent approaches address this issue by reducing
the synchronization points using software analysis tech-
nique and the virtual synchronization technique. In the
former approach, the analysis can determine the time
when each simulator should be synchronized [1]. In the
latter approach, time synchronization can be avoided by
separating trace-driven architecture simulation from trace
generation from component simulators [2]. Traces from
component simulators are captured only at the boundary
of actual data exchanges in algorithm specification.

With the reduced synchronization overhead, the per-
formance of parallel co-simulation is now limited by the
parallelism of a simulated system. If one simulator waits
for data from another simulator, such data dependency
between simulators serializes executions of two simulators.

To overcome this limitation we propose redundant host
execution of algorithm specification. In this paper, we
redundantly compute data required by a simulator in the
simulation host. Then the data computed from the host
execution are fed into the simulator even before data is
delivered from the other simulator. This eliminates the
simulation idle time that is caused by data dependencies
between simulators in parallel execution of multiple simu-
lators.

��� �
����	

��� �
����	�

 �
 �

��� �
����	

��� �
����	�

���
��������
���
���������
����

���
���������
�������

����
�����
������������������
���

��������
������������������
���

Figure 1: Difference between traditional parallel co-
simulation and proposed parallel co-simulation when
a data dependency exists between simulators

Figure 1 illustrates how the proposed approach can
achieve efficient parallel co-simulation with data depend-
ency. We assume that func_A is executed on the sim_1
simulator and func_B on the sim_2 simulator. Func_B is
dependent on func_A’s output. In a traditional co-
simulation approach, func_B on the sim_2 simulator can
be executed only after the sim_1 finishes executing
func_A and delivers the output to func_B running on the
sim_2. On the other hand, in the proposed approach, the
simulation host where the simulation is performed exe-
cutes func_A redundantly and immediately produces data
for func_B. Then we can initiate func_B on the sim_2
simulator by delivering the data from the redundant host
execution before the completion of func_A on the sim_1.

However, the proposed technique may result in the out-
of-order execution of the simulation model. Thus, the
proposed idea of redundant host execution cooperates
with the virtual synchronization technique where timing
simulation of the system is separated from the trace gen-
eration from component simulators. Redundant host exe-
cution accelerates trace generation by removing data de-
pendency between simulators. Virtual synchronization
reconstructs the correct behavior of the simulation model.

The main contribution of this paper is to build an effi-
cient co-simulation environment using parallel execution
of multiple simulators. It utilizes the virtual synchroniza-
tion technique to reduce the time synchronization over-
head and introduces the redundant host execution tech-
nique to reduce idle time caused by data dependency be-
tween simulators. The details will be explained in later
sections. The proposed approach is applicable for re-
stricted algorithm specification that consists of time in-
variant functions [2]. Time invariant means that the execu-
tion result depends only on the arrival order of input data
samples not on the absolute arrival times.

Section 2 shows related work and explains differences
to the proposed approach. In section 3, we briefly intro-
duce a trace-driven co-simulation technique using virtual
synchronization on which the proposed approach is based.
The main idea of the proposed technique is explained in
section 4. Experiments are shown in section 5 and finally
section 6 concludes the paper with future work.

2. Related work

Parallel co-simulation is not a new concept. As the
simulator speed is the bottleneck of co-simulation (usually
RTL hardware simulators), many approaches were pro-
posed to utilize parallelism between hardware components
[3][4]. However, their work suffers from data dependen-
cies between simulators and synchronization overhead.

Manjikian [5] and Mukherjee et al. [6] address parallel
co-simulation of multiple processor simulators. They ad-
vance the local clocks of simulators without synchroniza-

tion during some static amount of time, called quanta. It
helps to avoid synchronization at every clock increment.
But if interactions occur within quanta distorted behavior
or causality error would appear.
Jung et al. [1] statically analyzed algorithm specification
using a compiler technique. It analyzes all load and store
instructions to access shared variables and assumes that
simulators exchanges data with other simulators at those
synchronization points. Then it can advance simulator
clocks safely until the earliest data exchange between
simulators happens. But dynamic behavior caused by
cache, write buffers, and an operating system is difficult to
analyze using the static analysis.

In an optimistic approach [7], each simulator advances its
local clock optimistically assuming that no past event will
arrive. If this assumption fails, the simulator (with the failed
assumption) rolls back its local time to the event arrival time
canceling all results that have been processed after that time.
In the case of infrequent interactions, this approach can be
fast. However, when interactions are frequent, the cost of
roll back becomes an issue. Moreover the component simu-
lators should support the roll-back mechanism.

In both approaches of [1][7] when a simulator has data
dependencies with other simulators, it should wait for data
from other simulators. They also assume that a processor
has its own local memory for instructions and local data or
there is no bus conflict for local memory accesses. Other-
wise, simulators should be synchronized at every memory
access. Those assumptions limit candidate communication
architectures and result in inaccurate performance evalua-
tion.

3. Trace-driven co-simulation using virtual
synchronization

Based on a computation model which defines algorithm

behavior precisely, the virtual synchronization technique [8]
determines when each simulator should be synchronized
with other simulators. Moreover, when it performs synchro-
nization, it does not synchronize the local time of each
simulator to the global time. Instead, each simulator delivers
relative times between data samples. Then, as a centralized
co-simulation controller, the simulation kernel transforms
the relative times of data samples to the global times. In this
way, the local time of each simulator is virtually synchro-
nized to the global time in the simulation kernel.

As illustrated in Figure 2, a conventional synchronization
scheme synchronizes all simulators to the global clock. In
contrast, virtual synchronization takes the relative times (t1,
t2, t3) from two simulators and transforms those times to the
global times (t0+t1, t0+t1+t2, t0+t1+t2+t3) in the simulation
kernel. Thus the roles of data sample generation and timing
management are separated to the component simulators and
the simulation kernel respectively.

����	

����	�

����	

�����������
���

������
����

������
����

����	
 ����	
������
����

������
����

�
�

����	�

�

������
���

������
���

����	

����	�

����	

�
��
�
��
��
�
��
��
��
�

�������
���

������
����

������
����

������
���

������

��������	
��
����������

������������	
��
����������

Figure 2: Traditional synchronization VS. virtual syn-
chronization

For more accurate time management considering com-

munication architectures and dynamic behaviors, compo-
nent simulators generate access traces between actual data
exchanges and the trace-driven architecture simulator is
separated from the simulation kernel in trace-driven co-
simulation using virtual synchronization [2]. In this scheme,
the simulators store during execution all accesses to the
architecture components (resources) which may cause con-
flicts with other simulators. We define an access to an archi-
tecture component as a resource access trace. Note that all
resource access traces have relative times between traces to
apply virtual synchronization. The simulation kernel deliv-
ers input data to a simulator, executes the simulator and
acquires output data with resource access traces as shown in
Figure 3. This is the first part of trace-driven co-simulation.

Once resource access traces are acquired, the second part
of trace-driven co-simulation, called trace-driven architec-
ture simulator, transforms the relative times in the resource
access traces to the global times by considering conflicts on
the architecture resources. The architecture simulator re-
solves conflicts on a processor by modeling operating sys-
tem timing behavior and on a memory by modeling com-
munication architecture. The trace-driven co-simulation is
similar to Metropolis [9] and Artemis project [10] except
that how and which traces are obtained. They use the exe-
cution of algorithm specification to drive the simulation of
architecture specification while we obtain all resource
access traces from component simulators.

Note that the simulation kernel plays the role of broker
between component simulators and the trace-driven archi-
tecture simulator. After the simulation kernel acquires re-
source access traces from one simulator, it directly provides
the traces to the architecture simulator and starts the simula-
tor. If the architecture simulator consumes all resource ac-
cess traces or cannot advance the global time safely, it re-
quests new traces from the simulation kernel.

������
��
�� �����!

������
��
�� �����!

������
��
�� �����!

����
���	

����
���	�

����
���	"

������
���

������
����������

#$#

�����

%&'(

����� �����

�����������
�����
��
����������
��

�)�����
���
� �)���
��
���
�
����������������
����

�)����������
�������
�����

*)���+���

��,�
�����

Figure 3: Framework for the trace-driven co-
simulation using virtual synchronization

4. Parallel co-simulation techniques

Section 4.1 explains a parallel scheduling algorithm for

trace-driven co-simulation and its limitation. Section 4.2
introduces redundant host execution technique and section
4.3 the device model for host execution.

4.1 Parallel scheduling of multiple simulators

In the trace-driven co-simulation, the simulation kernel,

as a central controller, repeats the following tasks itera-
tively: (1) It determines a simulator to execute, (2) in-
vokes the simulator with input data, (3) waits for output
data with access traces, and (4) evaluates them using the
architecture simulator. Figure 4 shows some iterations of
such sequence, where the number in the simulation kernel
chart indicates which step it currently performs. In the
figure, the example shown in Figure 3 is performed by the
trace-driven co-simulation of [2]; Three simulators are
sequentially executed as illustrated in Figure 4 because the
simulation kernel waits until an execution of a simulator
finishes in each iteration.

�������

�����

��+���

��,�
�����

��
��
���
��
,�
���������

����� �����

����

� � *�

����"

������
����

������
���
������

�����
��
���
������
��

������
����

������
����

����
�
��
�

� � *� � � *�

�������
���
���
Figure 4: Sequential execution of three simulators
when the example in Figure 3 is performed by trace-
driven co-simulation

For parallel co-simulation, simulator 1 and 2 should be
invoked concurrently since func A and func B are inde-

pendent of each other. At each iteration, simulation kernel
invokes at most one simulator. Therefore, to make simula-
tors be overlapped across iterations, the simulation kernel
may not be blocked on step (3) unless the simulator is
busy processing data sent earlier. Figure 5 illustrates how
the proposed scheme works as follows.

In Figure 5, the simulation kernel invokes simulator 1 at
the first iteration but is not blocked on step (3) since simu-
lator 1 is not processing any data at that time. So it goes to
the next iteration to invoke simulator 2. Again it is not
blocked on step (3) since simulator 2 has been idle. At the
third iteration the simulation kernel examines simulator 1
again and finds out that the simulator is processing data
that were sent earlier (at the first iteration). So it is
blocked on step (3) until it received resource access traces
from simulator 1. Note that the simulation kernel does not
examine simulator 3 since it knows that function C is not
executable yet due to data dependency. Simulator 3 is
invoked at the fifth iteration after func A and func B fin-
ishes their executions.

�� �� *

����

� * ��

����"

�� *��

������
����

������
���

������

�����
��
���

������
��

������
����

������
����

���

�����

Figure 5: Proposed parallel scheduling of simulators
for trace-driven simulation

The simulation time for one iteration is composed of
the selection time for the next candidate simulator, the
invocation time to deliver input data, the waiting time for
the previous execution of the simulator, and the trace
evaluation time. So the simulation time for one iteration
can be formulated as equation 1. The first term in the
MAX operation represents the case the simulation kernel
is not blocked on step (3) since the simulator is not proc-
essing any previous data or the simulator already finished
to process previous data before entering step (3). The sec-
ond term represents the other case where the simulator is
still processing data that were sent at the k-th iteration.
For simple equation the processing time of step (4) is as-
sumed to constant over all iterations.

Equation 1. The simulation time for one iteration

)1(),(

:

:

:

1..1
�

−+=

−=
ikt

tkii

th
i

th
k

th
i

itersimothersMAXiter

iterationitheattimewaitingexcepttimesimulationothers

iterationktheatinvokedtimesimulatorsim

iterationithefortimesimulationiter

Since the waiting time in step (3) is usually much larger
than the other terms, the performance of this basic parallel
co-simulation is bound to parallelism of a simulated algo-

rithm. In Figure 5, simulator 3 waits for data from both
simulators 1 and 2 since the simulated system of Figure 3
has such dependency. This limitation is overcome by re-
dundant host execution.

4.2. Redundant host execution technique

In the proposed technique, we redundantly execute al-

gorithm specification on the simulation host. Then, we
provide the output data from the host execution to a simu-
lator before data from other simulators are available. Note
that this technique is possible since global time manage-
ment in trace-driven architecture simulator is separated
from trace generation from component simulators. Thus,
we can reconstruct the out-of-order execution of the simu-
lation model by the redundant host execution. It comple-
mentarily accelerates trace generation from the simulators
in the trace-driven co-simulation.

We add another step in an iteration of the simulation
kernel: in step (5) it executes the algorithm specification
at the host machine before step (2) as shown in Figure 6.
Usually the host execution (>1GIPS) is much faster than
the most advanced processor simulator (<1MIPS). Thus,
the output is available instantly. Then when it determines
the next simulator to invoke for the next iteration, it has
more chances to execute other simulators concurrently
because data can be provided by the redundant host exe-
cution. In Figure 6, simulator 3 receives data from host
executions of func A and func B that are performed at the
first and the second iteration respectively. Thus all three
simulators run in parallel. As can be observed from Figure
6, redundant host executions tend to reduce the waiting
time of step (3) so that the overhead of host execution is
negligible in most cases. Comparing to Figure 4, we do
not need to receive output data from simulators because
the redundant host execution already produces them.

�� �� - �� - � *

������
����

������
���

������

�����
��
���

������
��

������
����

������
����

���

*� *�

����

�����

����"

����
�
��
�

�������

�����

-

Figure 6: Modified parallel scheduling of simulators
using redundant host execution

Figure 7 illustrates a case where one simulator takes
more simulation time than other simulators. We call the
simulator as a ‘dominant simulator’. In that case, simula-
tion times for other simulators are mostly overlapped by
the simulation time of the dominant simulator. So waiting
time of step (3) will be visible only at iterations associated
with the dominant simulator. The simulation time for that

iteration represents the second term of equation (1). The
simulation time of all other iterations will take the first
term. If we add the simulation times of all iterations, we
obtain the total simulation time that becomes � ksim plus

a few terms associated with initial iteration steps before
the first invocation of the dominant simulator. In short, if
there is one dominant simulator, the total simulation time
will be bound to the simulation time consumed for the
dominant simulator. Figure 7 illustrates this fact graphi-
cally where the simulation times of most iterations are
covered by the simulation time consumed by simulator 1,
the dominant simulator.

�� - �� - � - �� * � - � � *

���

������
����

������
���
������

�����
��
���

������
��

������
����

�������
�������
���.�������
����
Figure 7: The case when there is a dominant simula-
tor

4.3 Device model using host execution

To enable redundant host execution, we need to capture

two types of data. One is input data that would have been
generated by other simulators but are now generated by
the host execution. Input data for a simulator should be
captured before a host execution because the host execu-
tion may manipulate the input data.

The other is device data which are accessed through
system calls during the host execution. Device data would
have been provided by device modeling in processor
simulators [11][12]. To provide device data during host
execution, however, we override system calls by using
“#define” macro in algorithm specification at the host
machine and simulators respectively as shown in Figure 8.

���
������
���

������������/�
��������

���
�������

������������/�
��������

������
��������
���

���
�
���

������
���
���
0%01

��
���������
��
�������������

Figure 8: Device model in host execution

First, overridden system calls at the host machine stores
return values and data from the devices during host execu-
tion. Second, the simulation kernel delivers input data and
device data together when it invokes a simulator. Finally,
device data are delivered to the overridden system calls at
the simulator. Because calling sequences of system calls at
the host execution and the simulation execution are identi-
cal throughout the simulation, we use FIFO queues with-

out any identification for system calls when we deliver
device data

For example, to read a file from HDD, we replace read
and lseek system calls with read_device and lseek_device
funtion calls. read_device function stores the size and the
data from read system call. lseek_device function stores
the return value from lseek system call. Then when invok-
ing the simulator at the third step, it delivers the input data
and device data together.

In the simulator, overridden read_device and
lseek_device functions store arguments into specific ad-
dresses. Then they put a unique value at the special con-
trol address, which gets caught by mem_write function at
the simulator interface. In mem_write function, it reads
device data from the host execution and copies them to the
application area.

5. Experiments

Figure 9 shows a DIVX player example which is com-

posed of three tasks: an H.263 decoder, an MP3 decoder
and an AVI file reader. While each task has multiple func-
tion blocks, we only show the internal blocks of the H.263
decoder because we parallelized only the H.263 decoder
task. The H.263 decoder task consumes 95% clock cycles
on the simulator in sequential execution. It is composed of
header decoder, dequantization (DQ), inverse discrete
cosine transform (IDCT), motion compensation (MC) and
display blocks.

2%
(�����

#3�
4������

5�����
�������

#" 4�����/

5)�6�
4������

%4"'47

Figure 9: Simplified view of DIVX player example

As shown in Table I, we use two different mappings us-

ing 2 processors and 5 processors respectively. We im-
plemented the proposed technique in PeaCE framework
[13]. For processor simulator, we use ADS 1.2 from ARM
and the simulation is executed on Linux 2.4 with Xeon
2.6Ghz dual CPUs. Each experiment decodes 11 frames,
which takes 34.3 seconds and requires 55M cycles if
simulated in one simulator.

Table I. Algorithm mapping for co-simulation
 Proc 1 Proc 2 Proc 3 Proc 4 Proc 5
2 IDCT, MC Others
5 IDCT MC MP3 Display Others

For each architecture, we experiment three different co-

simulation schemes: original trace-driven co-simulation
using virtual synchronization technique (original), parallel

cosimulation without host execution (parallel), and paral-
lel cosimulation with redundant host execution (proposed).

In the experiments, the host execution of the entire al-
gorithm only takes 0.6 second and the simulation time
except for the waiting time of step (3) is less than 2 sec-
onds in all cases. Therefore the total simulation time is
mostly taken by simulator execution time without time
synchronization overhead.

The experiments show that the proposed approach re-
duces simulation time using parallel simulation by 40%
and 45% for two cases respectively compared with the
previous approach [2] that already showed 43 times better
performance than the traditional conservative approach.

Table II. Performance comparison between original
virtual synchronization technique and the proposed
approach with/without the host execution

Simulator # Original Parallel Proposed
2 67.8s 54.6s (19%) 40.6s (40%)
5 66.8s 51.4s (23%) 36.7s (45%)

Figure 10 shows how the waiting times for simulators

are reduced from the proposed redundant host execution
technique. The total simulation times of the proposed ap-
proach are dominated by the simulation times of some
dominant simulators. In these experiments, there was no
single dominant simulator.

�

��

��

��

*�

-�

6�

8�

������9

��������

������9

��������

-�����9

��������

-�����9

��������

������

������

������

�����*

�����-

�
����

Figure 10: Comparison of waiting times between the
original cases and the proposed cases

6. Conclusion

This paper presents how to parallelize execution of

processor simulators based on virtual synchronization
technique. Moreover, to reduce data dependent latency
between simulators, we propose the redundant host execu-
tion technique to compute data required for the simulators
early.

We have implemented the technique in PeaCE frame-
work. Results demonstrate the usefulness of the proposed

technique in multi-processor co-simulation environments.
Experiments using a DIVX player example show about
40% and 45% reduction in simulation time using two and
five processor simulators respectively, compared with our
previous virtual synchronization technique that is already
43 times better than the traditional conservative co-
simulation.

Acknowledgement

Our work was partially supported by a gift from Intel
Corporation, a grant from UC Discovery program and a
post doctoral research program from Ministry of Informa-
tion and Communication (MIC, ROK). We are grateful to
the anonymous reviewers for their insightful comments.

References

[1] J. Jung, S. Yoo, and K. Choi, "Performance improvement of
multi-processor systems cosimulation based on SW analysis ",
DATE Conference and Exhibition, pp.749-753, Mar. 2001
[2] D. Kim, Y.Yi and S. Ha, "Trace-Driven HW/SW Cosimula-
tion Using Virtual Synchronization Technique", In Proc. of
42nd Design Automation Conference (DAC '05), June 2005.
[3] D. Nicol, and Ph. Heidelberger, “Parallel Execution for Se-
rial Simulators”, ACM Transactions on Modeling and Computer
Simulation, vol. 6, no. 3, July 1996, pp. 210-242
[4] R. M. Fujimoto, “Parallel Discrete Event Simulation”, Com-
munication of the ACM, Oct. 1990, Vol. 33, No. 10, pp. 30-53
[5] N. Manjikian, `̀Parallel Simulation of Multiprocessor Exe-
cution: Implementation and Results for SimpleScalar,'' Proceed-
ings of the 2001 IEEE Symposium on Performance Analysis of
Systems and Software, Arizona, Nov. 4-6, 2001, pp. 147-151.
[6] S. S. Mukherjee et al., ”A Fast and Portable Parallel Archi-
tecture Simulator: Wisconsin Wind Tunnel II”, IEEE Concur-
rency, 8(4):12-20, October-December 2000.
[7] S. Yoo and K. Choi, "Optimistic Distributed Timed Cosimu-
lation Based on Thread Simulation Model", Proc. of Proc. 6th
Int'l Workshop on Hardware/Software Co-Design, Mar. 1998.
[8] D. Kim, C. Rhee, and S. Ha, "Combined Data-driven and
Event-driven Scheduling Technique for Fast Distributed Co-
simulation", IEEE Transactions on Very large Scale Integration
Systems Vol. 10 pp 672-679 Oct. 2002
[9] G. Yang, A. Sangiovanni-Vincentelli, Y. Watanabe, F.
Balarin, “Seperation of Concerns: Overhead in Modeling and
Efficient Simulation techniques”, Proceedings of the 4th ACM
International Conference on Embedded Software, 2004, pp. 44-
53.
[10] A. Pimental, L. Hertzberger, P. Lieverse, van der Wolf P.,
E. Deprettere, “Exploring Embedded-Systems Architectures
with Artemis”, Computer, vol. 34, no. 11, 2001, pp. 57-63.
[11] D. Burger and T. Austin, “The SimpleScalar Toolset, Ver-
sion 2.0,” University of Wisconsin-Madison Computer Sciences
Department Technical Report #1342, June 1997.
[12] S. Wang et al., “Modeling and Integration of Peripheral
Devices in Embedded Systems”, In Proc. Design Automation
and Test in Europe, Mar. 2003
[13] http://peace.snu.ac.kr/research/peace/

