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ABSTRACT
Procrastination scheduling has gained importance for energy effi-
ciency due to the rapid increase in the leakage power consumption.
Under procrastination scheduling, task executions are delayed to
extend processor shutdown intervals, thereby reducing the idle en-
ergy consumption. We propose algorithms to compute the max-
imum procrastination intervals for tasks scheduled by either the
fixed priority or the dual priority scheduling policy. We show that
dual priority scheduling always guarantees longer shutdown inter-
vals than fixed priority scheduling. We further combine procras-
tination scheduling with dynamic voltage scaling to minimize the
total static and dynamic energy consumption of the system. Our
simulation experiments show that the proposed algorithms can ex-
tend the sleep intervals up to 5 times while meeting the timing re-
quirements. The results show up to 18% energy gains over dynamic
voltage scaling.

Categories and Subject Descriptors
D.4.1 [Operating Systems]: Process Management—scheduling

General Terms
Algorithms

Keywords
procrastication scheduling, fixed priority, real-time systems, low
power scheduling, leakage power, critical speed.

1. INTRODUCTION
Embedded systems are pervasive in the consumer electronics,

telecommunications, entertainment, industrial control and medical
sectors. These systems are usually portable with limited battery
life and power management is a crucial component in the opera-
tion of these systems. A processor is central to an embedded sys-
tem and consumes a significant portion of the total energy. Total
energy consumption consists of dynamic and static parts. The dy-
namic power consumption is due to the circuit switching activity,
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whereas static power consumption is present even when no logic
operations are being performed. There are two primary ways to
reduce power consumption of the processor: processorshutdown
and processorslowdown. Slowdown based on Dynamic Voltage
Scaling (DVS) has been shown to significantly reduce the dynamic
energy consumption at the cost of increased execution time. Note
that the longer execution time, while decreasing the dynamic power
consumption, increases the static energy consumption. The pri-
mary components of static power consumption are the standby cur-
rents including the device leakage currents. With device scaling
to sub-100 nm process technologies, leakage currents are increas-
ingly a dominant component of the standby power consumption
[23]. This implies that a straightforward slowdown while meeting
timing requirements is no longer sufficient for reducing overall en-
ergy consumption. Instead, a balance between the amount of pro-
cessor slowdown and processor shutdown is needed to minimize
the overall energy consumption for a given set of tasks.

Most of the earlier works on energy aware scheduling have ad-
dressed the problem of minimizing the dynamic power consump-
tion. Among the earliest works, Yaoet. al. [36] presented an
off-line algorithm to schedule a given set of jobs with arrival times
and deadlines. The solution is optimal, based on the assumption of
a continuous voltage range and the Earliest Deadline First (EDF)
scheduling policy. Generalization of the problem, considering dis-
crete voltage levels and fixed priority scheduling have been ad-
dressed in [17] [30] [37]. Low power scheduling for periodic real-
time systems has also been widely studied. The extent of slowdown
that the system can sustain is computed based on known feasibility
results for periodic task-sets. Computation of slowdown factors
for an independent task-set, based on dynamic (EDF) and fixed
(rate monotonic) priority scheduling, is addressed in [29, 3, 34,
8]. Earlier work, including our own, have addressed extension of
slowdown algorithms to handle task synchronization [13, 38] and
aperiodic tasks through periodic servers [24]. Dynamic slowdown
techniques in [28, 3, 16] show additional savings in energy by re-
claiming run-time slack arising from variation in the task execution
times. Such combined static and dynamic slowdown approaches
have shown to result in significant energy savings. The problem of
maximizing the system value for a given energy budget, as opposed
to minimizing the total energy, is addressed in [33, 31, 32, 2].

Recently, leakage abatement has been an important focus of the
work on power and energy minimization. Leakage is an increasing
concern with a predicted five-fold increase in the leakage power
with each technology generation [4]. Techniques such as input vec-
tor control [15] and power supply gating [26] have been proposed
to minimize leakage. The exponential dependence of sub-threshold
leakage current on the threshold voltage has led to Multi Thresh-



old CMOS (MTCMOS) circuit techniques [5]. Scaling the thresh-
old voltage by controlling thebody bias voltage has also been pro-
posed to minimize leakage [27, 23]. Scheduling techniques based
on adaptive body biasing have shown to reduce the total static and
dynamic power consumption [23, 18].

While many works have addressed leakage minimization, these
are based on the premise that the energy savings are proportional
to the extent of slowdown. This need not be true considering the
increase in leakage current and the power consumption of other
components such as memory and I/O [7]. This motivates a com-
bined slowdown and shutdown approach for energy minimization.
Among the earliest works, Iraniet. al. [12] consider the combined
problem of DVS and shutdown to schedule a given set of tasks
with deadlines. The authors propose a3-competitiveoff-line algo-
rithm based on the assumption of a continuous voltage range and
a convex power consumption function. Leeet. al. [20] address
procrastinationscheduling in periodic real-time systems and have
proposed Leakage Control EDF (LC-EDF) and Leakage Control
Dual Priority (LC-DP) scheduling algorithms. Procrastination by
a component refers to its choice to enter or remain in a shutdown
mode even when there are pending tasks.

Integration of procrastination and dynamic voltage scheduling is
a promising way to reduce overall energy consumption. We have
earlier addressed use of procrastination in EDF scheduling [14].
The results show up to 18% energy savings. In this paper, we ad-
dress scheduling in fixed and dual priority task systems. We show
that procrastination under LC-DP algorithm by Leeet. al. [20] can
lead to deadline misses. We present a remedy to this problem with
a procrastination algorithm that guarantees all task deadlines.

Our contributions are as follows: (1) we compute task procras-
tination intervals under the fixed priority scheduling policy as well
as the dual priority scheduling policy; (2) we show that the procras-
tination intervals under dual priority scheduling can be greater than
that of fixed priority scheduling which can further reduce the idle
energy consumption of the system; (3) based on the leakage en-
ergy characteristics of the 70nmtechnology, we combine dynamic
voltage scaling with procrastination to minimize the total energy
consumption.

The rest of the paper is organized as follows: Section 2 for-
mulates the problem with motivating examples. In Section 3, we
present the procrastination algorithm for fixed priority and dual
priority scheduling policies. Section 4 explains the integration of
procrastination and dynamic voltage scaling. The leakage power
model is discussed in Section 5 and the experimental results are
given in Section 6. Finally, Section 7 concludes the paper with
future directions.

2. PRELIMINARIES
In this section, we introduce the necessary notation and formu-

late the problem. An example follows to illustrate how scheduling
by LC-DP algorithm can result in tasks missing the deadline.

2.1 System Model
A task set ofn periodic real time tasks is represented asΓ =

fτ1; :::;τng. A taskτi is a 3-tuplefTi;Di ;Cig, whereTi is the period
of the task,Di is the relative deadline andCi is the worst case exe-
cution time (WCET) of the task at the maximum processor speed.
The tasks are scheduled on a single processor system based on a
preemptive scheduling policy. A task set is said to befeasibleif
all tasks meet the deadline. The processor utilization for the task
set,U = ∑n

i=1Ci=Ti � 1, is a necessary condition for the feasibility
of any schedule [21]. In this work, we assume task deadlines are
equal to the period (Di = Ti ) and tasks are scheduled by a fixed or

dual priority scheduling policy [21]. All tasks are assumed to be
independent and preemptive.

A wide range of processors like the Intel XScale [11], PowerPC
405LP [9] and Transmeta Crusoe [35] support variable voltage and
frequency levels. Dynamic voltage scaling (DVS) based on slow-
down factors has shown to result in significant energy savings. A
slowdown factor(ηi) is defined as the normalized operating fre-
quency, i.e., the ratio of the current frequency to the maximum
frequency of the processor. Since processors support discrete fre-
quency levels, the slowdown factors are discrete points in the range
[0,1]. Tasks are assigned slowdown factors based on the functional
and performance requirements of the system to minimize the total
energy consumption.

Procrastination scheduling has been shown to increase the pro-
cessor sleep intervals, by delaying task executions when the pro-
cessor is shutdown (sleep state). We say a task isprocrastinated
(or delayed) if on task arrival, the processor is in a shutdown state
and continues to remain in the shutdown state, despite the task be-
ing ready for execution. The procrastination interval of a task is the
time interval by which a task is procrastinated. Note that the pro-
cessor is shutdown, only when the processor ready queue is empty.

2.2 Dual Priority Scheduling
We briefly describe the dual priority scheduling policy, since the

task promotion times used in dual priority scheduling are used in
computing the task procrastination intervals. Dual priority schedul-
ing was proposed in [6] to improve the response time of aperi-
odic tasks while meeting the deadlines of all periodic tasks. Dual-
priority scheduling uses three distinct priority queues in decreasing
order of priority : upper, middle and lower. Each periodic task has
two priorities, one when it is in the lower priority queue and the
other in the upper priority queue. The middle priority queue is used
by the aperiodic tasks that arrive in the system. Each taskτi on ar-
rival is added to the lower priority queue. After a fixed time called
the promotion time, Yi , the task is promoted to its upper priority
queue. Tasks can be preempted by other higher priority tasks in the
same priority queue. The promotion time of each task is computed
based on the response time analysis of fixed priority scheduling. If
Ri is the worst case response time of a task andDi its deadline, then
the promotion time,Yi , of a task satisfies the following condition:

Yi � Di�Ri : (1)

The detailed scheduling algorithm and the computation of the task
promotion times are given in [6]. Our algorithms use task pro-
motion times in the computation of maximum task procrastination
intervals.

2.3 Procrastination under LC-DP Scheduling
Leeet. al.have proposed the LC-DP algorithm to extend the idle

intervals under fixed priority scheduling [20]. The procrastination
intervals are based on task promotion times computed under the
dual priority scheduling [6]. The scheduling rules of LC-DP as
proposed by Leeet. al. are as follows:

1. If the processor is busy and a new task arrives, the task is
directly added to the upper priority queue.

2. Whenever a task is promoted to the upper priority queue, all
tasks in the lower priority queue are promoted to the upper
priority queue.

3. When the processor is in the sleep state, tasks are added to
the lower priority queue.
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Figure 1: (a) Task set description with task arrival times, execu-
tion times and task deadlines. (b) Task schedule by the LC-DP
algorithm and task τ2 misses its deadlines (c) Procrastination
intervals under dual priority scheduling that results in a feasi-
ble schedule (d) Procrastination intervals under fixed priority
scheduling that results in a feasible schedule.

4. The procrastination interval is the minimum of the promotion
times of all tasks in the lower priority queue.

Note that Rules 1 and 2 are in contrast to the dual priority schedul-
ing scheme where every task remains in the lower priority queue
until its promotion time. We show that the above rules do not guar-
antee all task deadlines.

Consider a task set of two tasks with the following parameters
where the tasks are executed at the maximum speed.

τ1 = f2;5;5g andτ2 = f4;10;10g

The promotion times for the tasks as computed by the dual priority
algorithm areY1 = 3 andY2 = 2. We assume the processor is idle
prior to time t = 0 and taskτ1 andτ2 arrive at timea1 = 0 and
a2 = 1 respectively, as shown in Figure 1(a).

The task schedule according to the LC-DP algorithm is shown in
Figure 1(b). Based on the task arrival times, the promotion time of
both tasks ist =3. The LC-DP algorithm delays the task executions
up to timet = 3. At t = 3, both tasks are promoted to the upper
priority queue and taskτ1 executes up to timet = 5, when the next
instance arrives. Since tasks are immediately added to the upper
priority queue when the processor is busy, the next instance ofτ1
has the highest priority and executes up to timet = 7. Taskτ2

begins execution at timet = 7 and at timet = 10 the third instance
of τ1 arrives and preempts taskτ2. Taskτ1 executes up to time
t = 12 and taskτ2 which is not yet complete misses its deadline
of t = 11. Thus we see that the LC-DP algorithm can result in an
infeasible schedule.

Adding newly arrived tasks to the upper priority queue when the
processor is busy, as opposed to adding the tasks to the lower pri-
ority queue, can increase the processor demand during an interval
resulting in a deadline miss. We show later in this paper, that the
task executions can be delayed by the task promotion times only
under the dual-priority scheduling policy. The dual priority sched-
ule of the task set is seen in Figure 1(c). At timet = 3, both tasks
are promoted to the upper priority queue. Though instances of task
τ1 arrive at timet = 5 andt = 10, they arrive in the lower priority
queue and are promoted to the upper priority queue only after resid-
ing in the lower priority queue up to their promotion time interval
of 3 time units. Thus taskτ2 can execute for 4 time units before
t = 11 to meet the deadline. The schedule is shown in Figure 1(c).

We also consider task procrastination under the fixed priority
scheduling policy. In Section 3, we prove that delaying a task ex-
ecution by the minimum promotion time (Yi ) over all lower and
equal priority tasks ensures all deadlines. Thus the execution of
taskτ1 can be delayed by only 2 time units and the maximum pro-
crastination intervals for the tasks areZ1 = 2 andZ2 = 2. A feasible
schedule with task executions delayed up to timet = 2 is shown in
Figure 1(d).

3. PROCRASTINATION SCHEDULING
In this section, we propose algorithms to compute maximum task

procrastination intervals that guarantee feasibility of the task-set.
The basis of the algorithm are the two main results presented next.

3.1 Dual Priority Scheduling
Dual priority scheduling was proposed to improve the response

time of aperiodic tasks. As discussed in Section 2.2, a promotion
timeYi is associated with each taskτi when it is promoted from the
lower to upper priority queue. Delaying task executions by their
promotion time ensures all task deadlines under the dual priority
scheduling policy.

THEOREM 1. Given tasks are scheduled by the dual-priority
scheduling policy, all task deadlines are guaranteed if the maxi-
mum procrastination interval, Zi, of each taskτi satisfies:

Zi �Yi (2)

where Yi represents the promotion time of taskτi .

PROOF. Note that, task procrastination is analogous to execut-
ing aperiodic tasks in the system. Periodic tasks are delayed in
both cases by either explicit procrastination or by servicing aperi-
odic tasks. A processor shutdown under procrastination schedul-
ing can be considered as generating an aperiodic task with large
execution time. Since the processor is shutdown when idle and
task promotion times are used for procrastination, the duration of
the sleep interval under procrastination scheduling is equal to the
duration for which the aperiodic task would be serviced. If the
aperiodic task is considered as deleted when the processor wakes
up under procrastination scheduling, then the schedule of the pe-
riodic tasks is identical under both procrastination scheduling and
scheduling with aperiodic tasks. Thus the validity of the procrasti-
nation scheduling follows directly from the correctness of the dual-
priority scheduling algorithm.



3.2 Fixed Priority Scheduling
We have shown that the task promotion times cannot be used as

the maximum procrastination interval under fixed priority schedul-
ing. On the other hand, task feasibility is guaranteed if the max-
imum procrastination interval of each task is bounded by the pro-
motion times of all equal and lower priority tasks.

THEOREM 2. Let tasks be ordered in non-increasing order of
their priority. Given tasks are scheduled under the fixed priority
scheduling policy, all task deadlines are guaranteed if the maxi-
mum procrastination interval, Zi , of each taskτi satisfies:

8 j�i Zi �Yj (3)

where Yi represents the promotion time of taskτi based on dual
priority scheduling.

PROOF. We prove the claim by contradiction. Suppose the claim
is false and lett be the earliest time when a task, sayτi , misses its
deadline. Lett 0 be the the latest time beforet such that there are no
pending jobs with arrival times beforet 0 and a priority greater than
or equal to taskτi . Since no requests can arrive before system start
time (time= 0), t 0 is well defined. The only jobs that execute in
the interval[t 0;t] are the jobs released in that interval with a priority
greater than or equal to that of taskτi . Let A � fτ1; :::τig be the
set of jobs that execute in[t 0;t], then the workload of the jobs in
A is bounded by the response time,Ri , of taskτi . However, the
processor demand in an interval can increase due to procrastina-
tion scheduling. Tasks can be procrastinated if the processor is in a
shutdown state at time instancet 0. We show that the total procras-
tination interval is bounded byYi . By Theorem 2, the maximum
procrastination interval of each task inA is bounded byYi . Since a
task inA arrives at timet 0, it is true that tasks are not procrastinated
beyondt 0+Yi . Once the processor resumes execution, there is no
further procrastination up to timet as there are pending tasks at all
time within the interval[t 0;t]. Since a task misses its deadline, it
must be true thatRi +Yi > X, whereX = t� t 0 is the length of the
interval [t 0;t]. The release time and deadline of taskτi lies in the
interval [t 0;t] and it is true thatX � Di . Thus it follows that

Ri +Yi > Di

which contradicts the definition of task promotion interval, given
by Equation 1. Hence all tasks meet the deadline under procrasti-
nation scheduling.

3.3 Procrastination Algorithm
The procrastination algorithm is designed to ensure that no task

τi is delayed by more than its maximum procrastination interval
Zi . Note that the procrastination algorithm is independent of the
scheduling policy, however the computation of the maximum pro-
crastination intervals is governed by the scheduling policy imple-
mented in the system. The algorithm, describing how procrasti-
nation is handled in the system, has been proposed in our earlier
work [14]. Our earlier work has addressed procrastination in dy-
namic priority systems [14] and we consider fixed and dual priority
scheduling in this work.

Task executions are procrastinated when the processor is in the
sleep state and it is necessary that thepower managerhandling task
procrastination be implemented as a separate controller. When the
processor enters sleep state, it hands over the control to the power
manager (controller), which handles all the interrupts and task ar-
rivals while the processor is in sleep state. The controller has a
timer to keep track of time and it wakes up the processor after a

specified time period. When the processor is in sleep state and the
first taskτi arrives, the timer is set toZi . The timer counts down
every clock cycle. If another task,τ j arrives before the counter
expires, the timer is updated to the minimum of the current timer
value andZj . This ensures that no task in the system is procras-
tinated by more than its maximum procrastination interval. When
the counter counts down to zero (expires), the processor is woken
up and the scheduler dispatches the highest priority task in the sys-
tem for execution. All tasks are scheduled at their assigned priority
levels.

When no pending tasks are present in the processor ready queue,
the processor can be shutdown. Note that a shutdown has its asso-
ciated overhead and shutdown decisions need to be made wisely to
result in energy savings. In making shutdown decisions with pro-
crastination scheduling, it is important to know the minimum idle
period guaranteed by the procrastination algorithm. The following
results give the length of guaranteed idle period.

COROLLARY 1. Given tasks are scheduled by the dual-priority
scheduling policy, the minimum idle period, Zmin, guaranteed by
the procrastination algorithm is given by

Zmin = min1�i�n Yi (4)

where Yi represents the promotion time of taskτi .

COROLLARY 2. Given tasks are scheduled by the fixed priority
scheduling policy, the minimum idle period, Zmin, guaranteed by
the procrastination algorithm is given by

Zmin = min1�i�n Yi (5)

where Yi represents the promotion time of taskτi based on dual
priority scheduling.

The claim follows immediately from the procrastination algo-
rithm and the results given by Theorem 1 and Theorem 2. Though
the minimum idle period under both scheduling policies is the same,
the task procrastination intervals under dual priority scheduling are
always greater than or equal to that by fixed priority scheduling.
The following result proves the same.

THEOREM 3. Let ZFP
i and ZDP

i represent the maximum pro-
crastination interval of taskτi under fixed priority scheduling and
dual priority scheduling respectively, then

ZDP
i � ZFP

i (6)

PROOF. Our computation of task procrastination interval is based
on the task promotion time,Yi , under dual-priority scheduling. The
procrastination interval of a taskτi under dual priority scheduling,
ZDP

i , is bounded byYi (Theorem 1). The task procrastination in-
terval under fixed priority scheduling,ZFP

i , is also bounded byYi .
In addition,ZFP

i is also constraint to be no greater than the promo-
tion times of all lower priority tasks (Theorem 2). These additional
constraints can result in loweringZFP

i more thanYi and hence it is
true thatZDP

i is greater than or equal toZFP
i .

4. INTEGRATING PROCRASTINATIONAND
SLOWDOWN

As mentioned earlier, slowdown caused by DVS can increase the
component of energy consumption due to static power. For a given
technology choice, indeed, there is an optimum speed at which the
processor should be clocked to reduce the overall energy consump-
tion. This is indicated by thecritical speedof the processor and is
denoted byηcrit .



4.1 Critical Speed
Taking into account the leakage power and the power consump-

tion of components such as memory and I/O that are not subject to
DVS, the minimum voltage level at which the processor can run to
meet the timing constraints need not correspond to a lower energy
point. Fanet. al. [7] consider memory power consumption to show
that slowdown beyond a point does not result in lowering the total
energy. Miyoshiet. al. [25] show that the slowdown decision can
differ with different processor families in minimizing the total en-
ergy. With the increasing leakage contribution in present and future
CMOS technologies, it is important to compute the optimal point
beyond which slowdown does not reduce the energy consumption.
This optimal operating point at which the energy consumption is
minimized is referred to as thecritical speed.

4.2 Slowdown Factor Computation
Note that the task slowdown can be computed with any known

dynamic voltage scaling algorithm. Since executing below the crit-
ical speed consumes more time and energy, the minimum value for
the slowdown factor is set to the critical speed(ηcrit ). We update a
task slowdown factor to the critical speed if it is smaller thanηcrit .
The computed slowdown factors are updated by the following pro-
cedure:

8i
i = 1; :::;n i f (ηi < ηcrit ) ηi  ηcrit (7)

Since we only increase slowdown factors of a feasible task set, the
feasibility of the task set is maintained.

4.3 Combining Slowdown and Procrastination
Since we update the task slowdown factors based on the critical

speed, the system can have inherent idle time while operating at
the energy optimal point. If the computed slowdown factors do not
utilize 100% of the processor, we can compute procrastination in-
tervals which will further reduce the idle energy consumption. We
use the results in Section 3 to compute maximum task procrasti-
nation intervals. Even though the results in Section 3 do not con-
sider task slowdown, we can transform the task set to incorporated
slowdown factors. Given a task setΓ = fτ1; :::;τng with a slow-
down factorsηi for taskτi = fTi;Di ;Cig, we transform the task set
to Γ0 = fτ01; :::;τ

0
ngwhere each transformed task isτ0i = fTi ;Di ;

Ci
ηi
g.

The task promotion times and the procrastination intervals are com-
puted based on this transformed task set. Since the executing time
of each task under slowdown is bounded byCi=ηi , the procrastina-
tion intervals for the transformed task set ensures meeting all task
deadlines under slowdown.

5. POWER MODEL
In this section, we describe the power model used to compute the

static and dynamic components of power consumption of CMOS
circuits. The dynamic power consumption(PAC) of CMOS circuits
is given by,

PAC =Ce f fV
2
dd f (8)

whereVdd is the supply voltage,f is the operating frequency and
Ce f f is the effective switching capacitance. Among the different
leakage sources [1], the major contributors of leakage are the sub-
threshold leakage and the reverse bias junction current. We use the
power model and the technology parameters described by Martin
et. al. [23]. The sub-threshold currentIsubn, as a function of the
supply voltageVdd and the body bias voltageVbs is given below :

Isubn= K3eK4VddeK5Vbs (9)

Table 1: 70nmtechnology constants [23]
const value const value const value
K1 0:063 K6 5:26 10�12 Vth1 0:244
K2 0:153 K7 �0:144 I j 4:8 10�10

K3 5:38 10�7 Vdd0 1 Ce f f 0:43 10�9

K4 1:83 Vbs0 0 Ld 37
K5 4:19 α 1:5 Lg 4 106

whereK3, K4 andK5 are constant fitting parameters. The leakage
power dissipation per device due to sub-threshold leakage(Isubn)
and reverse bias junction current(I j ) is given by,

PDC =VddIsubn+ jVbsjI j (10)

and the total leakage power consumption isLg �PDC, whereLg is the
number of devices in the circuit. The relation of threshold voltage
Vth andVbs is represented by,Vth =Vth1�K1 �Vdd�K2 �Vbs where
K1, K2 andVth1 are technology constants. The cycle timetinv as a
function of theVdd and the threshold voltageVth is given by,

tinv =
LdK6

(Vdd�Vth)α (11)

The technology constants for the 70nmtechnology are presented
in Table 1 as given in [23]. The value forCe f f based on the Trans-
meta Crusoe processor, scaled to 70nm technology based on the
technology scaling trends [4], is also given in the table. To reduce
the leakage substantially, we useVbs= �0:7V. The static and dy-
namic power consumption as the supply voltage is varied in the
range of 0:5V and 1:0V is shown in Figure 2.

In addition to the gate level leakage, there is an inherent cost
in keeping the processor on which must be taken into account in
computing the optimal operating speed. Certain processor compo-
nents consume power even when the processor is idle. Some of
the major contributors are (1) the PLL circuitry, which drives up
to 200mAcurrent [10, 35] and (2) the I/O subsystem which is sup-
plied a higher voltage (2.5V to 3.3V) that the processor core. This
intrinsic cost (power) of keeping the system on is referred to as
Pon. The power consumption of these components will scale with
technology and architectural improvement and we assume a con-
servative value ofPon= 0:1W. The total power consumption,P, of
the processor is :

P= PAC+PDC+Pon (12)

wherePAC andPDC denote the dynamic and static power consump-
tion respectively. The variation of the power consumption with sup-
ply voltage is shown in Figure 2.

5.1 Critical Speed
To evaluate the effectiveness of dynamic voltage scaling, we

compute the energy consumption per cycle for different supply
voltage values. Due to the decrease in the operating frequency with
voltage, the leakage can adversely effect the total energy consump-
tion with voltage scaling. We compute the energy per cycle to de-
cide the aggressiveness of voltage scaling. The contribution of the
dynamic energyEAC and the leakage energyEDC per cycle is given
by,

EAC=Ce f fV
2
dd (13)

EDC = f�1 �Lg � (IsubnVdd+ jVbsjI j ) (14)
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Figure 2: Power consumption of70nm technology for Crusoe
processor:PDC is the leakage power,PAC is the dynamic power
and Pon is the intrinsic power consumption in on state.

where f�1 is the delay per cycle. The energy to keep the system
on increases with lower frequencies and is given by,Eon= f�1Pon.
The total energy consumption per cycle,Ecycle, with varying supply
voltage levels is given below and shown in Figure 3 .

Ecycle= EAC+EDC+Eon (15)

We define thecritical speedas the operating point that minimizes
the energy consumption per cycle. Figure 3 shows the energy char-
acteristics for the 70nmtechnology. From the figure, it is seen that
the critical point is atVdd = 0:7V. From the voltage frequency
relation described in Equation 11,Vdd = 0:7V corresponds to a fre-
quency of 1:26 GHz. The maximum frequency atVdd= 1:0V is 3:1
GHz, resulting in a critical slowdown ofηcrit = 1:26=3:1= 0:41.

5.2 Shutdown Overhead
In previous works, the overhead of processor shutdown/wakeup

has been neglected or considered only as the actual time and en-
ergy consumption incurred within the processor. However, a pro-
cessor shutdown and wakeup has a higher overhead than the en-
ergy required to turn on the processor. For example, processors
lose all register and cache contents when switched to the deepest
sleep mode, leading to additional overhead. The various overheads
associated with a processor shutdown and wakeup are enumerated
below:

1. Prior to a shutdown, all registers must to be saved in main
memory.

2. The dirty data cache lines need to be flushed to main memory
before a shutdown.

3. The inherent energy and delay cost of processor wakeup, as
specified in datasheets.

4. On wakeup, components such as data and instruction caches,
data and instruction translation look aside buffers (TLBs) and
branch target buffers (BTBs) are empty and result in extra
misses on a cold start (empty structures).

This results in extra memory accesses and hence energy overhead.
This cost will vary, depending on the nature of the application and
the processor architecture.

We perform an energy overhead estimation, similar to our earlier
work [14], which is used in our simulations. With typical embed-
ded processors having cache sizes between 32KB and 128KB, we
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Figure 3: Energy per Cycle for 70nm technology for the Cru-
soe processor:EAC is the switching energy,EDC is the leakage
energy andEon is the intrinsic energy to keep the processor on.

conservatively assume a 32KB instruction and data cache. Assum-
ing 20% lines of the data cache to be dirty before shutdown results
in 6554 memory writes. With an energy cost of 13nJ [19] per mem-
ory write, the cost of flushing the data cache is computed as 85µJ.
On wakeup, there is an additional cost due to cache miss. Note that
a context switch occurs when a task resumes execution and has its
own cache miss penalty. However, shutdown has its own additional
cost than a regular context switch due to the fact that these struc-
tures are empty. We assume 10% additional misses rate in both the
instruction and data cache. Therefore, the total overhead of bring-
ing the processor to active mode is 6554 cache misses. A cost of
15nJ [19] per memory access, results in 98µJoverhead. Adding the
cache energy overhead to the energy of charging the circuit logic
(300µJ), the total cost is 85+98+300= 483µJ.

Due to the cost of shutdown, the shutdown decision needs to be
made wisely. An unforeseen shutdown can result in extra energy
and/or missing task deadlines. Based on the idle power consump-
tion, we can compute the minimum idle period, referred to as the
idle thresholdintervaltthreshold, to break even with the wakeup en-
ergy overhead. Since the idle power consumption at the lowest
operating voltage/frequency is 240mW, and the shutdown energy
overhead is 483µJ, tthreshold is 2:01ms. We assume a sleep state
power of 50µW, which can account for the power consumption in
the sleep state and that of the controller.

6. EXPERIMENTAL SETUP
We implemented the proposed scheduling techniques in a dis-

crete event simulator. To evaluate the effectiveness of our schedul-
ing techniques, we consider several task sets, each containing up to
20 randomly generated tasks. We note that such randomly gener-
ated tasks is a common validation methodology in previous works
[3, 20, 34]. Based on real life task sets [22], tasks were assigned
a random period and WCET in the range [10 ms,125 ms] and [0.5
ms, 10 ms] respectively. All tasks are assumed to execute up to their
WCET. We use the processor power model described in Section 5
to compare the energy consumption of the following techniques :

� No DVS (no-DVS): where all tasks are executed at maximum
processor speed.

� Traditional Dynamic Voltage Scaling (DVS) : where tasks
are assigned the minimum possible slowdown factor.

� Critical Speed DVS (CS-DVS): where all tasks are assigned
a slowdown greater than or equal to the critical speed(ηcrit ).
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Figure 4: Energy consumption normalized to no-DVS, based
on fixed and dual priority scheduling policies.

� Procrastination with fixed priority scheduling (CS-DVS-P1):
This is the Critical Speed DVS (CS-DVS) slowdown with the
procrastination technique under fixed priority scheduling.

� Procrastination with dual priority scheduling (CS-DVS-P2):
This is the Critical Speed DVS (CS-DVS) slowdown with the
procrastination technique under dual-priority scheduling.

We assume that the tasks have a rate monotonic priority ordering
and the task slowdown factors are computed by the algorithm given
in [34]. We assume that the processor supports discrete voltage lev-
els in steps of 0:05V in the range 0:5V to 1:0V. These voltage levels
correspond to discrete slowdown factors and each computed slow-
down factor is mapped to the smallest discrete level greater than
or equal to it. When procrastination is not implemented, the pro-
cessor wakes up on the arrival of a task in the system and the idle
interval is the time period before the next task arrival. The pro-
crastination schemes add the minimum guaranteed procrastination
interval to the next task arrival time to compute the minimum idle
interval. The processor is shutdown if the upcoming idle period is
greater thantthreshold, the minimum idle period to result in energy
gains. Note that the same shutdown policy is implemented under
all scheduling algorithms discussed in the paper.

Experimental Results
The energy consumption of all the techniques are shown in Fig-
ure 4 as a function of the processor utilization at maximum speed.
When the processor is maximally stressed for computation, there
are no opportunities for energy reduction. As the processor utiliza-
tion decreases, slowdown results in energy reduction. The no-DVS
scheme consumes the maximum energy and the energy consump-
tion of the techniques is normalized to no-DVS. It is seen from the
figure that all techniques perform almost identical up to the crit-
ical speed which maps to 40% utilization. When the task slow-
down factors fall below the critical speed, DVS technique starts
consuming more energy due to the dominance of leakage. The CS-
DVS technique executes at the critical speed and shuts down the
system to minimize energy. However, if the idle intervals are not
sufficient to shutdown, CS-DVS can consume more energy than
the DVS technique as seen at utilization of 20% and 30%. CS-
DVS leads to as much as 22% energy gains over no-DVS and 6:5%
gains over DVS. Procrastination schemes further minimize the idle
energy by stretching idle intervals and increasing the opportunity
of shutdown. Comparing the total energy consumption, the energy
consumption of CS-DVS-P1 and CS-DVS-P2 are close and both
schemes results up to an additional 18% gains over CS-DVS. The
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Figure 5: Comparison of # wakeups and idle energy of CS-
DVS-P1 and CS-DVS-P2 normalized to CS-DVS.

comparison of the relative gains of CS-DVS-P1 and CS-DVS-P2
over CS-DVS is presented next.

Figure 5 compares the number of wakeups (shutdowns) and the
idle energy consumption of the procrastination schemes normalized
to CS-DVS. Note that, since the slowdown factors are mapped to
discrete voltage/frequency levels, there are idle intervals at higher
utilization as well. These idle period can be used indynamic recla-
mation [3] for more energy savings. However, we use these idle
intervals to shutdown the processor to compare the benefits of the
procrastination schemes. Procrastination clusters the task execu-
tions and enables having longer and fewer sleep time intervals thereby
decreasing the idle energy consumption. Compared to CS-DVS,
procrastination always lowers the idle energy consumption with the
idle energy consumption decreasing with a decrease in the proces-
sor utilization (at maximum speed). Procrastinationunder dual pri-
ority scheduling (CS-DVS-P2) performs better than procrastination
under fixed priority scheduling (CS-DVS-P1). Since the task pro-
crastination intervals under CS-DVS-P2 are always greater than or
equal to that under CS-DVS-P1, the number of shutdowns and the
idle energy consumption of CS-DVS-P2 are smaller than that un-
der the CS-DVS-P1 scheme. The task procrastination intervals un-
der CS-DVS-P1 and CS-DVS-P2 are identical at lower utilization
(20% and 10%) which results in a similar idle energy consumption
and number of shutdowns for both procrastination schemes. The
idle energy consumption is reduced to as much as 25% percent by
procrastination. It is seen from the figure that the idle energy con-
sumption and the number of shutdowns follow the same trend.

Figure 6 compares the relative sleep time intervals of both pro-
crastination schemes normalized to CS-DVS. The average sleep in-
terval is seen to increase with a decrease in processor utilization. It
is seen that CS-DVS-P1 increases the average sleep interval by 2
to 5 times. Since tasks have larger procrastination intervals under
CS-DVS-P2, it further extends the sleep intervals with the average
sleep intervals being 4 to 5 time that of CS-DVS. This extended and
fewer sleep intervals are beneficial in minimizing the total system
energy as it can allow a further shutdown of components such as
memory banks and other I/O devices, which have larger shutdown
overheads. The figure also compares the average idle interval (time
intervals when no task is executing i.e. an active idle or sleep state).
It is seen that the average idle interval increases by up to 3 to 7
times under CS-DVS-P1 and up to 5 to 7 times under CS-DVS-P2.
This suggests that CS-DVS has many smaller idle intervals which
result either in more shutdown overhead or additional leakage en-
ergy consumption if not shutdown. With procrastination, the power
manager also has fewer shutdown decisions to make.
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7. CONCLUSIONS AND FUTURE WORK
In this paper, we see that scheduling policies that combine task

slowdown with procrastination are important for energy efficiency.
As leakage is significantly contributing to the total power consump-
tion, it is important to compute the optimal operating speed and
maximize the sleep intervals. Procrastination significantly reduces
the number of wakeups while stretching the sleep intervals. The
extended sleep periods result in an energy efficient operation of the
system while meeting all timing requirements. We have proposed
algorithms to computed maximum task procrastination intervals
under both fixed priority and dual priority scheduling policies. The
dual priority scheduling guarantees more energy savings than fixed
priority scheduling through extended procrastination. We plan to
extend these techniques to schedule the system wide resources for
minimizing the total energy consumption.
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