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Abstract Recent processors [12, 3Q]port slowdown, where we

can vary the operating frequency and voltage at run-time.
Slowdown factors determine the extent of slowdown a The power consumptiof®, depends on the operating volt-
computing system can experience based on functional andige and frequency of the processor and is given by:
performance requirements. Dynamic Voltage Scaling (DVS) P—Cur.V2 . f
= Leff Vgd- (1)
of a processor based on slowdown factors can lead to con-
siderable energy savings. We address the problem of comwhereCe¢¢ is the effective switching capacitancéyq is
puting slowdown factors for dynamically scheduled tasks the supply voltage andl is the operating frequency. Due to
with specified deadlines. We present an algorithm to com-the quadratic relationship between power and voltage, a de-
pute a near optimal constant slowdown factor based on thecrease in the supply voltage decreases the power consump-
bisection method. As a further generalization, for the case tion. However, the transistor gate delay increases with a de-
of tasks with varying power characteristics, we present the crease in voltage, forcing a decrease in the operating fre-
computation of near optimal slowdown factors as a solution quency. The relationship between the transistor gate delay,
to convex optimization problem using the ellipsoid method. tinv, and supply voltage is given by:
The algorithms are practically fast and have the same time k- Vg
complexity as the algorithms to compute the feasibility of tinv = Noa =V )& (2)
a task set. Our simulation results show on an aver2@%
energy gains over known slowdown techniques using stati
slowdown factors and0%gains with dynamic slowdown.

cwhereVyq is the operating voltage andh is the threshold
voltage,a has a value in the range 1 to 2 akds a tech-
nology constant [31, 25]. Note that a decrease in the supply
voltage has a quadratic decrease in the power consumption
but only a linear reduction in the operating frequency, thus
1. Introduction resulting in lower energy consumption per unit work. The
important point to note is that energy savings are achieved
Power is an important metric for optimization in the de- at the cost of increased execution time. Energy reduction
sign and operation of embedded systems. A processor isand meeting deadlines are often contradictory goals and we
central to an embedded system and contributes to a sighave to judiciously manage the tradeoff between time and
nificant portion of the total power consumption of the sys- power to achieve our goal of minimizing energy.
tem. Modern processors have higher operating speeds and Among the earliest works on this problem, Yab al.
processing capacity to meet the increasing computation de{32] presented an off-line algorithm to compute the opti-
mands of application. With the increasing speeds, the powemal speed schedule for a set ldfjobs. The optimality is
consumption of the processor also increases. Though probased on the EDF scheduling policy and a continuous volt-
cessors are designed to handle large workloads, the pealge range. Kworet. al.[17] have extended this work by
processing capacity may not be needed for all applications.relaxing the assumption of a continuous voltage range. Off-
This observation has led to two primary ways of reduc- line scheduling using fixed priority tasks has been addressed
ing the power consumption in embedded computing sys-in [23] [24] and shown to be NP-hard [33]. As opposed to
tems: processashutdownand processoslowdown Slow- minimizing the energy consumption of a system, Raetu
down using frequency and voltage scaling has been showral. have addressed the problem of maximizing the system
to be effective in reducing the processor energy consump-value (utility) for a given energy budget [27, 26]. Schedul-
tion [28, 29, 2]. ing of task graphs on multiple processors has also been



addressed. Luo and Jha [20] have considered schedulin@. Preliminaries

of periodic and aperiodic task graphs in a distributed sys-

tem. Non-preemptive scheduling of a task graph on a multi  In this section, we introduce theeocessary notation and
processor system is considered by Gruian and Kuchcinskiformulate the problem. We first describe the system model
[10]. Zhanget. al. [35] have given a framework for task followed by an example to motivate the problem.
scheduling and voltage assignment for dependent tasks on

a multi-processor system. They have formulated the volt-7 1 System Model

age scheduling problem as an integer programming prob-

lem. A task set ofn periodic real time tasks is represented

Dynamic voltage scaling techniques for real-time pe- I = {T1, ., Tn}. A taskT; is a 3-tuple{T;, D;,Ci}, where
riodic task systems has been the focus of many works,Ti is the perloq of the task; is the relative dgadllne with
where known feasibility test have been extended to com-DPi < Ti, andC; is the WCET for the task at maximum speed.
pute static slowdown factors [29, 9]. A generalization of 1N€ Phaseg, of a periodic taski is the release time of the
the energy minimization problem, which incorporates indi- first !nstf';mca)f the task. A set O,f tasks said to hrephasef'
vidual tasks with different power consumption characteris- the firstinstances of each ta§k is releasgd at the sametime. A
tics, is addressed by Aydin, Melhem and Meg&]. Note system, where all tasks are in phase withk= 0, is referred
that the static slowdown factors are computed based onf© &S &ynchronousask system [3]. Thyper-periocof the
worst case execution time of each task. Dynamic reclama-{@SK seétH, is defined as the least common multiple (Icm) of
tion techniques in [22, 2, 16] result in additional energy sav- the task periods. The tasks are ;cheduled ona smgle proces-
ings by reclaiming run-time slack that arises due to varia- SOF System based on a preemptive scheduling policy and all
tion in task execution time. Recent work, including our own, [@SKS are assumed to be independent. A task system is said
has addressed extension of slowdown algorithms to handid® Pefeasibleif all tasks meet thne deadline. The processor
task synchronization [34, 14] and aperiodic tasks [21]. Fur- Utilization for the task set) = 5L,C;/Ti < 1 is a neces-
thermore, the need for leakage energy minimization, which S&7y condition for the feasr:blhty of any schedule [19]. The
is increasingly important in current and future generation d€nsityof the systemA = 5L, Ci/min(T;, Dj) < 1, is & suf-
CMOS circuits [5], has lead to procrastination scheduling ficient feasibility condition under EDF scheduling [19].
techniques proposed in [18, 15]. Each invocation of the task is callegab and thek" in-

vocation of taskr; is denoted as; . Each jobJy is repre-

DVS for periodic tasks is well researched, however most sented by a 3-tupléay, dy, &} whereay is its arrival time,
works are based on the assumption that the relative taskj, — a, + D; its absolute deadline arg < C; is its execu-
deadline is equal to the task period. Based on this assumption time at maximum speed. The time interyal, dy] is
tion, the Earliest Deadline First (EDF) policy is known to referred to as théob interval and e, is the weight of the
be optimal [19, 4], and the system utilization can be used asinterval. Theintensityof an intervall = [z Z], denoted by
a slowdown factor [2]. When the deadlines differ from the o) is is defined as in [32] g(1) = 2%, where the sum
period, a similar approach implies that the system densitys gyer all job intervalsk with [ac, d] C [z,Z] i.e. all jobs
[19] or similar feasibility results [6] can be used as a con- ith their intervals lying completely withifg, Z]. The inter-
stant slowdown. However, as we show later in this paper, v |* that maximizeg(1) is called thecritical interval for
this slowdown is far from optimal and we bridge this gap 4 given job sed. In this paper, we only compute the inten-
in our work. We extend previous work by computing slow- ity of intervals of the forn{0,t], which can be efficiently
down for periodic tasks with (1) task deadlines less than the .omputed. For a synchronous systéfit (3 = 0), the inten-
period and (2) varying power characteristics for the tasks. sity of an interval0, t], with all tasks executed at maximum
We propose th@isection methodnd theellipsoid method  gpeed, is given by2 57, (|52 4+ 1) -G
to compute optimized static slowdown factors. We gain on ta=tL T
an average 20% energy savings over the known technique
with static slowdown and 40% savings with dynamic slow-
down.

2. Variable Speed Processors

A wide range of processors like the Intel StrongARM

The rest of the paper is organized as follows: Section 2 processors [11], Intel XScale [12], Transmeta Crusoe [30]
formulates the problem with motivating examples. This is support variable voltage and frequency levels, which can be
followed by algorithms to compute energy efficient slow- varied at run-time. A tasklowdown factorcan be viewed
down factors. We present the bisection method in Sectionsas its normalized operating frequency. At a given instance,
3 and the ellipsoid method is explained in Section 4. The ex-it is the ratio of the current frequency to the maximum fre-
perimental results are given in Section 5 and Section 6 con-quency of the processor. Note that the voltage and frequency
cludes the paper with future directions. levels are tightly coupled, and a (frequency, voltage) pair is



associated with each slowdown factor. The important point
to note is when we perform a slowdown, we change the fre-

£ idle time in schedule

[T 7 'tisthe execution

guency along with a proportionate change in voltage. We as- time for the job

sume that the frequency can be varied over a discrete range, | deadline deadline

with fmin and fmax being the minimum and maximum fre- v 1] N

guency respectively. We normalize the speed to the maxi- ;

mum speed to have discrete points in the intefggain, 1], vl 1] [1] [x] [1] [ 1]

wherenmin= fmin/ fmax A S A A S

We assume that all invocations (jobs) of a particular task (a) Task set description: Task arrival times, deadlines and

are assigned an equal time budget for execution and this WCET at maximum speed

is referred to as aniform slowdownThe assigned time }

budget can be used for intra-task voltage scaling, however task

in this work we assume that the budget is utilized by per- & 1

forming a uniform slowdown during the entire task execu- X -missed

tion. Note that the time budget dictates the extent of slow- 22— M2 ——————

down and can be expressed by the task slowdown factor. (b) Task schedule at=0.7 time =

If all tasks are assigned the same static slowdown factor, it

is called aconstant slowdowrWith slowdown, the system sk

utilization increases and is represented.yy= Zin=ln_li%' 1, dle

wheren; is the slowdown factor for task. We assume that N S =

the overhead incurred in changing the processor speed is * [ 12 ] [12 | [12] [12 ] [12]]

incorporated in the task execution time. Considering static T T 3k ‘;1 § SI i0837 fime —e

and dynamic slowdown, a speed change occurs only at a (¢) Task schedule a1 =0.

context switch. This overhead, similar to the context switch

overhead, is constant and can be incorporated in the worst ©s

case execution time of a task. We note that the same as- * 133 i

sumption is made in previous works [1][2]. R T T
0 1 2 3 4 5 6 7 8 9 10

(d) Task schedule at=0.75 time —

2.3. Motivating example
Figure 1. (a) Task arrival times and deadlines
Consider a simple real time system with 2 periodictasks, (NOT a task schedule). (b) Task schedule at
a constant slowdown equal to the utilization,
11=1{221}2=1531} n=0.70, and job 1, misses its deadline. (c)
Figure 1(a) shows the jobs for each task at their ar- Feasible schedule using density as the con-
rival time and their workload at full speed. We have ex-  Stant slowdown factor, n = 0.83, however not
plicitly shown the deadlines when the deadline differs from  optimal. (d) Task schedule at the optimal con-
the period. The task set is feasible under EDF scheduling stant slowdown of n=0.75.
at full speed. A slowdown equal to the processor utiliza-
tion U = (1/2+4 1/5) = 0.7 is optimal when the relative
deadlines are equal to the task period. However, as seen o ]
in Figure 1(b), jobty, misses its deadline at a constant suffices as shown in Figure 1(c). Note that three units of
slowdown ofn = U = 0.7. Three units of work has to be workload has to be finished within the inter{@4] and the
done in first 4 time units. At a slowdown ofT it requires  intensity of the interval is B4 = 0.75. Thusn = 0.75is a
3(1/0.7) = 4.285 time units and a task misses its deadline. /ower bound on the constant slowdown ape: 0.75 is the
Thus, to ensure all task deadlines, the utilization cannot be®Ptimal constant slowdown.
used as a constant slowdown factor. A constant slowdown A constant slowdown need not be optimal when the task
equal to the densith = (1/2+1/3) = 0.83, keeps the sys-  deadline is less than the period. As seen in the Figure 1,
tem feasible [19]. (Note that for this example, the feasibil- there isinherentidle time even at the optimal constant slow-
ity test described in [6] also results in the same slowdown of down. This motivates the computation of uniform slow-
0.83.) The schedule at a slowdownrpE= A = 0.83 is shown down factors for the tasks. Furthermore, different tasks can
in Figure 1(c). Note that, this is not the optimal slowdown have different power characteristics, and assigning slow-
and the schedule has many idle intervals which can be ex-down factors based on task characteristics can be more en-
ploited for further energy savings. A slowdownrp& 0.75 ergy efficient.




3. Constant Static Slowdown Theorem 5 is a stronger result than Theorem 4 [6], how-
ever not optimal. The best slowdown satisfying Theorem

In this section, we propose algorithms to compute the 5 can be computed efficiently and we refer to it asBrewi
constant slowdown factor under EDF scheduling when the Test Algorithm (DTA)named after the author who proposed
task deadlines can be less than the pe(lod< Ti). First,  the feasibility test. Note that feasibility test given by Theo-
we present known feasibility tests for periodic task systemsrem 3 is optimal, however it does not compute the optimal

which form the basis of our algorithms. slowdown factor. The optimal constant slowdown factor for
Theorem 1 [19] A task set of n periodic tasks, is feasible @ periodic task set can be computed as given by Theorem 6.
under EDF scheduling, if the density= 3L, & < 1. Theorem 6 For a synchronous task systew, @ = 0, the

Theorem 2 [6] A task set of n periodic tasks, arranged in Mmaximum intensity over all intervgd, t], 0 <t < H, where
non-decreasing order of their relative deadlines, is feasible H is the hyper-period of the task set, is the optimal constant
under EDF scheduling if : slowdown factor.

Y Cc 1 & T—Dy The proof of the result is present in [13]. It is known that
i=1..n% T D > T G<1 o (3) the intensity function can increase only at discrete points
k=1 K k=1 K represented by the s&t= {t, = kT +Djli=1,...,n;k>
Theorem 1 and 2 are sufficient feasibility conditions. O} [3]. Thus it suffices to check the intensity of the inter-
These tests are efficient and rurliimear time, however not ~ vals[0,t] with t € S However, the cardinality of the s&
optimal. Theorem 3 by Baruadt. al.gives an optimal test ~ can be exponential in the number of tasks, resulting in a
when the system utilization is strictly less than 1. worst case exponential time complexity.
While we propose algorithms for synchronous task sys-
tems, note that the computed slowdown factors can be used

equal to 1. Thus the feasibility problem for synchronous Sys_lndependent of the task phase. It is known that the maxi-

; L ' mum intensity interval of a synchronous task set is an upper
tsrﬁs) on one processor is solvable in t'm(%—% {max(T; — bound on the maximum intensity interval for the system, ir-
.

respective of the task phase [19, 3]. Thus the results in this
By Theorem 3, it follows that the constraints for the feasi- paper can be applied all periodic task systems.
bility of the task set can be specified as :

Vet < tmax: %iioﬂHl) G<1 (@

Theorem 3 [3] Atask set is feasible if the intensity of all in-
tervals[0,t],t < tmax= 725 {maxT; — D)}, is less than or

Corollary 1 The slowdown factors computed for a syn-
chronous system imply feasibility of the periodic task set,
Ti independent of the individual task phase.
The important point to note is that when we consider slow- 5 1 gisection Method

down, the values ofax depends on the utilization under
slowdown Uy, and is given bymax= ﬁ{m@('ﬁ —-Di)}. We are interested in an efficient algorithm to compute

Zhenge. al.[36] also present a similar result as given by the optimal constant slowdown. The feasibility test given by
Theorem 3, where they check the intensity of all intervals Theorem 3 is much faster compared to the algorithm given
[0,1],t < tfax= ﬁ{z{‘zl %(Ti —Dj)}. Note that themax by Theorem 6. Note however, that the feasibility test cannot
given in Theorem 3 is just an upper boundtgf,, where be directly used to compute slowdown factors. We observe
each(T; — Dj) term is approximated by the maximum over that performing a binary search over the range of slowdown
all (Ti — Dj) terms. factors can result in a faster algorithm. It is important to note
We extend Theorem 1 and 2 to compute constant slow-that the time valuémax (in Theorem 3) is proportional to
down factors as given by Theorem 4 and 5. The proof of the 18—&“ whereUy, is the system utilization under slowdown.
results follows directly from Theorem 1 and 2. As we slowdown the system, the utilization of the system

Theorem 4 Given n independent periodic tasks, the feasi- iNcreases. As the utilization approachesyly tends to in-

bility of the task-set is guaranteed at a constant slowdown finity. Thus in the worst case, we may have to check all in-
ofn, if % S, % <1 tervals up to the hyper-period of the task set, which requires

i o ) worst case exponential time. To avoid the explosiotgf,
Theorem 5 Given n periodic tasks, arranged in non- e impose an additional constraint on the processor utiliza-
decrgasmg order of their relative deadlines, the task set IS tion, Uy < 1—&y. Sinceg, is a constant, it boundsay to
feasible at a constant slowdownmpfif gg1{maxT, — Di)}. We present a pseudo polynomial time
i 1({dlc 1 algorithm with this additional constraint on utilization.
i=1..,n= (z T + D Ck) <1l (5 The algorithm begins with computing upper and lower
N \= 'k bounds on the slowdown factor. The upper bound on the

| Ti—Dx
Tk

=1



constant slowdown ig, = min(A, 1), whereA is the system If the utilization at the solution computed by the bisec-
density. The lower bound on the constant slowdown is sys-tion method is 1- ¢, then we have an approximate solu-
tem utilization at maximum speed. However, at this slow- tion. Otherwise, we have the optimum solution to the prob-

down, the utilization becomes 1 amgax tends to infinity.
To boundmayx, We compute the slowdowm Which bounds
the utilization to 1-¢, and is given by = = E . We per-
form a binary search in the randme;,ny] to compute the
optimal constant slowdown. This technique is calledtihe
section methodnd is described in Algorithm 1. In each it-

eration, we test the feasibility of the system at a slowdown

of nm = 1FM by checking whether the intensity of all in-

tervals[0,t] is < 1, witht < tmax= 18'&% {maxTi — Di)}.
The feasibility test is given by Algorithm 2. If the system
is feasible, we update the upper boundytg nu < Nm. If
the system is infeasible, we update the lower boung{p

N < Nm. This completes one iteration. We compute a new
Nm in each iteration of the algorithm. The number of itera-
tions is polynomial in the binary representatiomadnd we
represent this bound bg. Thus the loop in line 4 of Algo-
rithm 1 can be bounded b¥,. Since we bound the proces-
sor utilization tmax is proportional tomaxD; — T;) and we
have a pseudo polynomial time algorithm.

Algorithm 1 Bisection-Method(, ...Ty)
Nsoln < 1.0; {Initialization}
n + 18—‘5“; {Lower bound om : Uy, is 1—¢g}
Nu < min(4, 1); {Upper bound om }
for (count« 1;count< ky; count« count+ 1) do
Nm ¢ (M +Nu)/2;
if (Feasibility-Testjm)) then
Nu < Nm;
Nsoln <= Nm;
else
N < Nm;
end if
: end for
: returnnsorn;

=

T =

Algorithm 2 Feasibility-Testf)
1: Uy = £ 31, 3 { Utilization at slowdowm}

tmax= 1l_J—[iJn; {tmaxvalue atn}

if (Uy > 1—gy)then
return FALSE;

end if

{Feasibility constraints on slowdown

if (Victma: & 2 (['524] +1)-Gi <t) then
return TRL E;

else
return FALSE;

- end if

=
2o

lem in pseudo polynomial time, an exponential improve-
ment over the worst case computation time for the optimal
constant slowdown.

4. Uniform Slowdown Factors

In this section, we compute uniform slowdown factors
as opposed to a constant slowdown factor. Undgform
slowdown all instances of a task have the same static
slowdown factor, however different tasks can have differ-
ent slowdown factors. Assigning different slowdown fac-
tors based on the task characteristics is energy efficient, es-
pecially when the task-set is diverse with tasks having dif-
ferent power characteristics [1].

4.1. Optimization Problem

We formulate the energy minimization problem as an op-
timization problem. Lefj € R" be a vector representing the
task slowdown factors, whei® element of the vector rep-
resents the slowdown for taskt;. Let the power consump-
tion of the taskr; as a function of slowdown be represented
by fi(n). The optimization problem is to compute the opti-
mal vectom* € R" such that the system is feasible and the
total energy consumption of the system is minimized. The
total energyE, is a function offi and is given below.

G fitm)
&S Toni

The constraints set for the feasibility of the system are de-
scribed separately for each rmet.

E(R) = (6)

4.1.1. Devi Test Optimization The best knowrpolyno-
mial sizedconstraints for optimizing the energy function are
those given by Theorem 2. Considering slowdown, the con-
straints are as follows:

L1 1

szkr]k Di Z

Since a slowdown factors is the normalized frequency, we
have the implicit constraimjmin < n; < 1. The above con-
straints form a sufficient feasibility test. The result follows
directly from Theorem 2. We refer to the optimization prob-
lem under the constraints given by Equation 7 asDbei
Test Optimization (DTOnethod.

4.1.2. Constraints for Optimal Solution The constraints

in Equation 7 are linear in the number of tasks, however
the constraints are not optimal. To compute an optimal so-
lution, we consider the intensity constraints given by Theo-
rem 3. The constrair@' given by Equation 8 specifies that

Dk Ck

<1 ()



the intensity of interval0,t] under slowdown be less than
or equal to 1.

N t—Dj Ci

c! ;(lTiH'l)'n—:Sl

1
T (8)

the weak optimization problem given that we can solve the
weak separation problem.

Theorem 7 [8] There exists an oracle-polynomial time al-
gorithm that solves the weak optimization problem for every
circumscribed convex bod¥; n, R) given by a weak sepa-

The intensity of an interval depends on the number of taskration oracle. ((K;n,R) represents a convex body&R"
instances in the interval. The number of instances of taskand is contained in a sphere with center as the origin and

Ti which contribute to the intensity of the intervi@,t] is
given by ci(t) = ([t}%J + 1) and the execution time of

each instance i€;/n;. Equation 8 must be true for )

0 < t < H, whereH is the hyper-period of the task set.
Note that the constraint set contains only the constra@ints
wheret € S= {ty = KTi +Dj[i = 1,...,n;k> 0}. In addi-
tion, we also have the implicit constraintgnin < n; < 1.

4.1.3. Constraints with bounded processor llization

To compute the optimal solution, the constraint set con-
tains allC'; t < H, resulting in exponential number of con-
straints. Similar to the bisection method, we constraint the
system utilization byJ, < 1 — g, to reduce the constraint

radius R.)

The algorithm that computes the weak optimum solu-
tion is the ellipsoid method. The ellipsoid method applies
to problems where the feasible space and the optimization
function are convex, and the gradient of the optimization
function can be computed. We show our problem formula-
tion satisfies the above properties for all convex differen-
tial power functionsf;(-) [13]. The main result of the ellip-
soid method is as follows. If we have a subroutine (called
the separation oracle) that checks the feasibility of a vec-
tor ij and generates a separating hyper-plane if the vector
is not feasible, then we can compute a close to optimum

set. This reduces the constraint set to include all constraintssolution in a polynomial number of calls to the separation

Ch t < gg{maxT — Dj)}, resulting in pseudo polyno-
mial number of constraints. However, solving a system with
pseudo polynomial constraints is computationally intensive

oracle. The detailed theorems and proofs stating this re-
sult are present in [8]. By Theorem 7, we can compute a
weak optimum solution in polynomial number of calls to

and it requires time, two orders magnitude larger than thethe separation algorithm (separation oracle) using the ellip-

proposed ellipsoid method [13].
Note that, to check the feasibility of a slowdown vec-
tor i, we need not check all the constraints in the system. It

soid method.

4.2.2. Separation Oracle (algorithm)We present the

suffices to check the constraints given by Theorem 3, whereSeparation oracle used by the ellipsoid method to com-

the number of constraints depend on the utilizatignThe
number of constraintgary with each vector and checking
the minimal required constraints for a given vector can lead
to faster algorithms. In the ellipsoid method, the constraints
are not specified explicitly and it is well suited for prob-
lems of this nature.

4.2. Ellipsoid Method (Algorithm)

In this section, we present a high level description of
the ellipsoid algorithm [7]. We begin with a description of

pute slowdown factors. The separation oracle is based
on the feasibility test given by Theorem 3. L#t rep-
resent the task slowdown factors. To bound the running
time of the feasibility test, we impose an additional con-
straint on the utilizationU, < 1—¢&,. The number of

constraints to check is proportional tg_u[y—” If a con-

straintCli is violated for vectoru, then the hyper-plane
OCH(f)(q — u) satisfy the property of the separating
hyper-plane [8].C' is differentiable and the separat-
ing hyper-plane is computed by evaluating the derivative of
C! at vectoru. This gives a pseudo polynomial time separa-

the terms used in the ellipsoid method, and then apply it totion oracle.

our energy minimization problem. The exact definitions are
given in [8].

4.2.1. Background A weak optimization problenis to

4.2.3. Geometric Interpretation of Ellipsoid Method
We give a geometric interpretation of ellipsoid method. We
start with an ellipsoid (convex body) containing the feasi-

compute a solutionthat is close-to-optimum under specifiedble space and the given optimization function. We check

performance guarantees. Amacle-polynomial time algo-
rithm is an algorithm that calls an oracle algorithm a poly-
nomial number of times. Aveak separation oraclis an al-

the feasibility of the center of the ellipsoid. If it is not feasi-
ble, the separation oracle returns a separating hyper-plane,
H, that cuts the ellipsoid into two halves (feasibility cut). If

gorithm that decides if a vector is in the feasible space andthe center of the ellipsoid is feasible, we compute the gradi-
if not, it generates a hyper-plane that approximately sepa-ent of the optimization function at the center. This gradient
rates the feasible space from the vector with some specifiechyper-plane splits the ellipsoid into two halves (optimal-
performance guarantees. We state the theorem which solveRy cut). In both cases, we can identify the non-optimal half



by the property of convex functions. We include the opti-
mal half into a new ellipsoid. leach iteration, the volume
of the ellipsoid decreases by a fixed ratio inversely propor-
tional to n. After a polynomial number of steps, the vol-
ume of the ellipsoid is very smalk,ume and we have

a close-to-optimal solution. The ellipsoid method is ex-
plained in Algorithm 3. NewEllipsoid() constructs the
new ellipsoid and its center as shown in line 12. The de-
tails are given in [7].

Algorithm 3 Ellipsoid Methodty, ...Tp)
1: Set all elements afisgn to 1.0; {Initialization}
2: K + sphere around origin to include all feasible slow-
down factors: 6< ni < 1; {Initial Ellipsoid}
3: fjc «+ origin; {Center of the ellipsoif
4: while (voluméK) > €yo1ume) do

5. if (Feasibility-Tes{(fic) ) then
6: h«+ DE(A)(f —fc) ; {The gradient of the energy
function (optimality-cut)
7 Nsoln <= Nec;
8 else
o: Let C* be the violated constraint;
10: h « 0OCX(R) (A — fc) ; {The gradient of the con-
straintC* (feasibility-cut)}
11:  endif
12:  (Knew Nnew) < NewEllipsoidK, h);
13:  (K,nc) < (Knew Nnew);

14: end while
15: returnnsein;

Algorithm 4 Feasibility-Test):
Un = 3L & S {Utilization at slowdowrii}

tmax= fj—&n; {tmaxvalue atij }
Constraint Set is :
CY: 3, &% < 1—egy {Utilization constrain}
Victnae C' 1 £31L1(1 52 +1) - § < 1 {Feasibility con-
straintg
N 5 C':nmin < Ni < 1 {Processor constrairts

if (all constraints are satisfiet)en

return TRUE;
else

return FALSE;
end if

5. Experimental Results

Simulation experiments were performed to evalu-

note that such randomly generated tasks are a common val-
idation methodology in previous works [29, 2, 1, €].
Tasks were assigned a random period and WCET in the
range [20000,50000] and [100,5000] respectively. We
tried to keep the hyper-period low by rounding the pe-
riods to a multiple of 1000. To generate task with dead-
lines smaller than the period, the deadlines were de-
creased by 0% to 25% of the task period, in steps of
5%.

We use a power model based on the dynamic power con-
sumption of CMOS circuits [25] as given by Equations 1
and 2. We note, however that our algorithm can be applied
to more sophisticated power models, particularly as leak-
age becomes a significant contribution [5]. Recent proces-
sors have low operating voltages, and we use an operating
voltage range of BV and 18V. The threshold voltage is as-
sumed to be B6V anda = 1.5. We have normalized the op-
erating speed and support discrete voltage levels in steps of
0.05 in the normalized range.

We compared the energy consumption for the following
technigues presented in the paper:

e Devi Test Algorithm (DTA)

¢ Bisection Method (BM)

o Devi Test Optimization (DTO)
¢ Ellipsoid Method (EM)

We setg, to a value of 01 in bothBM and EM. This
results in utilizing up to 99% of the processor, while
having practical run-times. The computed slowdown fac-
tor was mapped to the smallest discrete level greater than
or equal to it. Note that DTA and DTO are sufficient feasi-
bility tests and a feasible task set can be declared as infea-
sible, in which case we execute all tasks at the maximum
speed i = 1).
5.1. Identical Power Characteristics

The slowdown factor can be efficiently computed by the
DTA method, with a run time polynomial in the number
of task. However, it is not energy efficient and has max-
imum energy consumption. The computation of the opti-
mal intensity inspects all intervals up to the hyper-period of
the task set which can be very large. In our experiments, in
spite of setting task periods as multiples of 1000, the hyper-
period interval was too large to evaluate the intensity of all
intervals up to the hyper-period. With tasks having identi-
cal power characteristics, tiBM andEM have very close
energy consumption. Similar is the case@drA andDT O.
Since, tha8M computes a near optimal slowdown, the slow-
down computed bBM is always better thaDTA

ate our proposed techniques. We considered several task Figure 2 shows the percentage energy gains oBtkle

sets, each containing 10-2domly generated tasks. We

overDTA, as a function of the utilization at maximum speed



Identical Power Characteristics Bimodal Distribution

(%) Energy gains (%) Energy gains

10
(%) Deadline Reduction
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(%) Deadline Reduction Power Coefficient 35 40
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Figure 2. Percentage Energy savings of the (%) Energy gains
Bisection Method (BM) over the Devi Test Al- ]
gorithm (DTA) as the utilization  under maxi- %E
mum speed is varied. 1

and the deadline reduction. All tasks are assumed to exe- bower Coefiicen 35 a0
cute up to their WCET. It is seen that tBM outperforms

DTA as the deadline are made stricter. With a decrease in

relative task deadlines, the slowdown factor computed by Figure 3. Percentage Energy gains of the
DTAshoots up and tasks are executed at higher speed con- Ellipsoid Method ( EM) over the Devi Test

suming more energy. ThBM method continues to com- Optimization method ( DTO) for varying task

pute near optimal slowdown factor to resultis energy gains.  power characteristics.

For higher utilization, a small decrease in relative deadline

makes the system infeasible und®f A and we set) = 1.

However, the slowdown computed M continues to in-  switching capacitanc&e ¢ in Equation 1k times the base
crease and the gains seem to decrease at utilization of 80%ase. The workload for each task is set to its worst case exe-
and 90%. At lower utilization (at maximum speed), the den- cytion time. We consider the following two distributions for
sity continues to increases with a decrease in deadline andhe power coefficients:

hence there is a steady increase in gains. The gains seem
to lower as utilization decreases due to the relation between
power and slowdown. An improvemeadtin the slowdown
factor, results in more gains when the slowdown is higher.
For this reason, the gains seem to decrease as the utiliza- e Uniform Distribution , where the power function co-
tion falls below 60%. Thus in all caseBM performs better efficients of the tasks are uniformly distributed be-
with a decrease in deadline. We see as much as 35% en-  tween 1 ank. We varykiin the rangd1, 4].

ergy gains over the DTA with the average energy savings

¢ Bimodal Distribution : where there are two types of
tasks in the system, with 50% having a power coeffi-
cient of 1 and the others having a power coefficient

We compare the energy consumption of &M and

being 20%. DT O for task sets with a utilization between 60%-80% and
execution time set to their WCET. Figure 3 shows the per-
5.2. Varying Power Characteristics centage gain oEM over DTO. Since both methods com-

pute slowdown factors considering the task power charac-

Due to the diverse nature of the tasks in a system, taskderistics, the energy gains do not vary with the power coeffi-
can have distinct power characteristics [1]. The problem cientk and its distribution. The energy savings depends on
formulation in Section 4 works for all convex differential the amount of slack that the slowdown method can identify.
power characteristics. However, for experimental results we As the deadline is decreasdd] O identifies less slack and
restrict power characteristics to tiaear [1], where tasks  theEM performs better. ThEM uses a near optimal feasi-
have a constant power coefficient. We say a task has powebility test and utilizes the maximum available slack. Similar
coefficientk to represent a task with a power consumption gains are seen for the case of uniform and bimodal distribu-
k times the base case. This is equivalent to tasks having aion of power coefficients.



5.3. Dynamic Slowdown

Dynamic Slowdown with identical task power coefficients

Dynamic reclamation techniques results in further en-
ergy savings by reclaiming the run-time slack that arises due
to variations in the task execution time. We use the Generic
Dynamic Reclaiming AlgorithrfGDRA [1] by Aydin et.
al. The authors have shown that a run-time slack of a higher
priority task can be utilized by lower priority jobs, while en-
suring all task deadlines. The details are present in [1].

We vary the best case execution time (bcet) of a task from
100% to 10% of its WCET (wcet). Tasks were generated by
a Gaussian distribution with megm>= (wcet+ bcet) /2 and
a standard deviatiorg = (wcet— bcet)/6. We performed
experiments on tasks with varying utilization and power
characteristics and observed the same trend. As before, we
compareBM with DT Afor the case of identical power char-
acteristics. For the case of varying task power characteris-
tics, we compar&M with DOA. In all the techniques, we
use theGDRAtechnique over the static slowdown factors to
compute dynamic slowdown. The gains are shown in Fig-
ure 4. As expected, the energy gains increase with the de-
crease in deadline. It is seen that the average gains steadily
increase as the execution time decreases. Thus, identifying
the maximum slack through the computation of static slow-
down factors helps in dynamic reclamation as well.

Figure 4. Percentage Energy gains with Dy-
namic Slack Reclamation scheme. The top
graph compares the gains of BM over DTA
. . with the dynamic reclamation scheme. The
5.4. Computation Time gains of EM over DTO along with dynamic

L . . reclamation are shown in the bottom graph.
The computation times for the various techniques are of

different orders of magnitude. In our examples, the hyper-
period was usually too large and computing the optimal in-
tensity was not possibl@M computed the solution in or-  factors and an algorithm based on ellipsoid method to com-
ders of milliseconds. It took 1 to 10 seconds to compute the pute uniform slowdown factors. Experimental results show
solution usingE M. Each iteration of the ellipsoid method on an average 20% energy gains over the known slowdown
requires matrix computations to compute the new ellipsoid techniques. The average gains extend to 40% with dynamic
and its center, which is computation intensive. However, slowdown. The algorithms have a pseudo polynomial time
note that the matrix computationsitM require time poly- ~ complexity and are practically fast. The techniques are en-
nomial in the number of tasks, making our technique scal- ergy efficient and can be easily implemented in an RTOS.
able. TheDTA runs in linear time and the computation is This will have a great impact on the energy utilization of
negligible. The computation time fdTO is also small, portable and battery operated devices.

since it has only linear number of constraints. We conducted  |n our future work, we plan to extend these techniques to
the experiments on a Sun workstation. Since the computacompute optimal discrete task slowdown factors.

tions are performed off-line, we justify a computation time

of few milliseconds to seconds for energy gains.
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