
Optimized Slowdown in Real-Time Task Systems

Ravindra Jejurikar
Center for Embedded Computer Systems

University of California, Irvine
Irvine, CA 92697
jezz@cecs.uci.edu

Rajesh Gupta
Department of Computer Science

University of California, San Diego
La Jolla, CA 92093
gupta@cs.ucsd.edu

Abstract

Slowdown factors determine the extent of slowdown a
computing system can experience based on functional and
performance requirements. Dynamic Voltage Scaling (DVS)
of a processor based on slowdown factors can lead to con-
siderable energy savings. We address the problem of com-
puting slowdown factors for dynamically scheduled tasks
with specified deadlines. We present an algorithm to com-
pute a near optimal constant slowdown factor based on the
bisection method. As a further generalization, for the case
of tasks with varying power characteristics, we present the
computation of near optimal slowdown factors as a solution
to convex optimization problem using the ellipsoid method.
The algorithms are practically fast and have the same time
complexity as the algorithms to compute the feasibility of
a task set. Our simulation results show on an average20%
energy gains over known slowdown techniques using static
slowdown factors and40%gains with dynamic slowdown.

1. Introduction

Power is an important metric for optimization in the de-
sign and operation of embedded systems. A processor is
central to an embedded system and contributes to a sig-
nificant portion of the total power consumption of the sys-
tem. Modern processors have higher operating speeds and
processing capacity to meet the increasing computation de-
mands of application. With the increasing speeds, the power
consumption of the processor also increases. Though pro-
cessors are designed to handle large workloads, the peak
processing capacity may not be needed for all applications.
This observation has led to two primary ways of reduc-
ing the power consumption in embedded computing sys-
tems: processorshutdownand processorslowdown. Slow-
down using frequency and voltage scaling has been shown
to be effective in reducing the processor energy consump-
tion [28, 29, 2].

Recent processors [12, 30] support slowdown, where we
can vary the operating frequency and voltage at run-time.
The power consumption,P, depends on the operating volt-
age and frequency of the processor and is given by:

P=Ce f f �V
2
dd � f (1)

whereCe f f is the effective switching capacitance,Vdd is
the supply voltage andf is the operating frequency. Due to
the quadratic relationship between power and voltage, a de-
crease in the supply voltage decreases the power consump-
tion. However, the transistor gate delay increases with a de-
crease in voltage, forcing a decrease in the operating fre-
quency. The relationship between the transistor gate delay,
tinv, and supply voltage is given by:

tinv =
k�Vdd

(Vdd�Vth)α (2)

whereVdd is the operating voltage andVth is the threshold
voltage,α has a value in the range 1 to 2 andk is a tech-
nology constant [31, 25]. Note that a decrease in the supply
voltage has a quadratic decrease in the power consumption
but only a linear reduction in the operating frequency, thus
resulting in lower energy consumption per unit work. The
important point to note is that energy savings are achieved
at the cost of increased execution time. Energy reduction
and meeting deadlines are often contradictory goals and we
have to judiciously manage the tradeoff between time and
power to achieve our goal of minimizing energy.

Among the earliest works on this problem, Yaoet. al.
[32] presented an off-line algorithm to compute the opti-
mal speed schedule for a set ofN jobs. The optimality is
based on the EDF scheduling policy and a continuous volt-
age range. Kwonet. al. [17] have extended this work by
relaxing the assumption of a continuous voltage range. Off-
line scheduling using fixed priority tasks has been addressed
in [23] [24] and shown to be NP-hard [33]. As opposed to
minimizing the energy consumption of a system, Rusuet.
al. have addressed the problem of maximizing the system
value (utility) for a given energy budget [27, 26]. Schedul-
ing of task graphs on multiple processors has also been

addressed. Luo and Jha [20] have considered scheduling
of periodic and aperiodic task graphs in a distributed sys-
tem. Non-preemptive scheduling of a task graph on a multi
processor system is considered by Gruian and Kuchcinski
[10]. Zhanget. al. [35] have given a framework for task
scheduling and voltage assignment for dependent tasks on
a multi-processor system. They have formulated the volt-
age scheduling problem as an integer programming prob-
lem.

Dynamic voltage scaling techniques for real-time pe-
riodic task systems has been the focus of many works,
where known feasibility test have been extended to com-
pute static slowdown factors [29, 9]. A generalization of
the energy minimization problem, which incorporates indi-
vidual tasks with different power consumption characteris-
tics, is addressed by Aydin, Melhem and Moss´e [1]. Note
that the static slowdown factors are computed based on
worst case execution time of each task. Dynamic reclama-
tion techniques in [22, 2, 16] result in additional energy sav-
ings by reclaiming run-time slack that arises due to varia-
tion in task execution time. Recent work, including our own,
has addressed extension of slowdown algorithms to handle
task synchronization [34, 14] and aperiodic tasks [21]. Fur-
thermore, the need for leakage energy minimization, which
is increasingly important in current and future generation
CMOS circuits [5], has lead to procrastination scheduling
techniques proposed in [18, 15].

DVS for periodic tasks is well researched, however most
works are based on the assumption that the relative task
deadline is equal to the task period. Based on this assump-
tion, the Earliest Deadline First (EDF) policy is known to
be optimal [19, 4], and the system utilization can be used as
a slowdown factor [2]. When the deadlines differ from the
period, a similar approach implies that the system density
[19] or similar feasibility results [6] can be used as a con-
stant slowdown. However, as we show later in this paper,
this slowdown is far from optimal and we bridge this gap
in our work. We extend previous work by computing slow-
down for periodic tasks with (1) task deadlines less than the
period and (2) varying power characteristics for the tasks.
We propose thebisection methodand theellipsoid method
to compute optimized static slowdown factors. We gain on
an average 20% energy savings over the known techniques
with static slowdown and 40% savings with dynamic slow-
down.

The rest of the paper is organized as follows: Section 2
formulates the problem with motivating examples. This is
followed by algorithms to compute energy efficient slow-
down factors. We present the bisection method in Sections
3 and the ellipsoid method is explained in Section 4. The ex-
perimental results are given in Section 5 and Section 6 con-
cludes the paper with future directions.

2. Preliminaries

In this section, we introduce the necessary notation and
formulate the problem. We first describe the system model
followed by an example to motivate the problem.

2.1. System Model

A task set ofn periodic real time tasks is represented
asΓ = fτ1; :::;τng. A taskτi is a 3-tuplefTi;Di;Cig, where
Ti is the period of the task,Di is the relative deadline with
Di � Ti , andCi is the WCET for the task at maximum speed.
The phase,φi, of a periodic taskτi is the release time of the
first instanceof the task. A set of tasks said to bein phaseif
the first instances of each task is released at the same time. A
system, where all tasks are in phase withφi = 0, is referred
to as asynchronoustask system [3]. Thehyper-periodof the
task set,H, is defined as the least common multiple (lcm) of
the task periods. The tasks are scheduled on a single proces-
sor system based on a preemptive scheduling policy and all
tasks are assumed to be independent. A task system is said
to befeasibleif all tasks meet the deadline. The processor
utilization for the task set,U = ∑n

i=1Ci=Ti � 1 is a neces-
sary condition for the feasibility of any schedule [19]. The
densityof the system,∆ = ∑n

i=1Ci=min(Ti;Di)� 1, is a suf-
ficient feasibility condition under EDF scheduling [19].

Each invocation of the task is called ajob and thekth in-
vocation of taskτi is denoted asτi;k. Each jobJk is repre-
sented by a 3-tuplefak;dk;ekg whereak is its arrival time,
dk = ak +Di its absolute deadline andek �Ci is its execu-
tion time at maximum speed. The time interval[ak;dk] is
referred to as thejob interval and ek is the weight of the
interval. Theintensityof an intervalI = [z;z0], denoted by
g(I) is is defined as in [32] :g(I) = ∑k ek

z0�z , where the sum
is over all job intervalsJk with [ak;dk] � [z;z0] i.e. all jobs
with their intervals lying completely within[z;z0]. The inter-
val I� that maximizesg(I) is called thecritical interval for
a given job setJ. In this paper, we only compute the inten-
sity of intervals of the form[0; t], which can be efficiently
computed. For a synchronous system (8i : φi = 0), the inten-
sity of an interval[0; t], with all tasks executed at maximum
speed, is given by :1t ∑n

i=1(b
t�Di

Ti
c+1) �Ci.

2.2. Variable Speed Processors

A wide range of processors like the Intel StrongARM
processors [11], Intel XScale [12], Transmeta Crusoe [30]
support variable voltage and frequency levels, which can be
varied at run-time. A taskslowdown factorcan be viewed
as its normalized operating frequency. At a given instance,
it is the ratio of the current frequency to the maximum fre-
quency of the processor. Note that the voltage and frequency
levels are tightly coupled, and a (frequency, voltage) pair is

associated with each slowdown factor. The important point
to note is when we perform a slowdown, we change the fre-
quency along with a proportionatechange in voltage. We as-
sume that the frequency can be varied over a discrete range,
with fmin and fmax being the minimum and maximum fre-
quency respectively. We normalize the speed to the maxi-
mum speed to have discrete points in the interval[ηmin;1],
whereηmin = fmin= fmax.

We assume that all invocations (jobs) of a particular task
are assigned an equal time budget for execution and this
is referred to as auniform slowdown. The assigned time
budget can be used for intra-task voltage scaling, however
in this work we assume that the budget is utilized by per-
forming a uniform slowdown during the entire task execu-
tion. Note that the time budget dictates the extent of slow-
down and can be expressed by the task slowdown factor.
If all tasks are assigned the same static slowdown factor, it
is called aconstant slowdown. With slowdown, the system
utilization increases and is represented byUη = ∑n

i=1
1
ηi

Ci
Ti

,
whereηi is the slowdown factor for taskτi . We assume that
the overhead incurred in changing the processor speed is
incorporated in the task execution time. Considering static
and dynamic slowdown, a speed change occurs only at a
context switch. This overhead, similar to the context switch
overhead, is constant and can be incorporated in the worst
case execution time of a task. We note that the same as-
sumption is made in previous works [1][2].

2.3. Motivating example

Consider a simple real time system with 2 periodic tasks,

τ1 = f2;2;1g;τ2= f5;3;1g

Figure 1(a) shows the jobs for each task at their ar-
rival time and their workload at full speed. We have ex-
plicitly shown the deadlines when the deadline differs from
the period. The task set is feasible under EDF scheduling
at full speed. A slowdown equal to the processor utiliza-
tion U = (1=2+ 1=5) = 0:7 is optimal when the relative
deadlines are equal to the task period. However, as seen
in Figure 1(b), jobτ1;2 misses its deadline at a constant
slowdown ofη = U = 0:7. Three units of work has to be
done in first 4 time units. At a slowdown of 0:7, it requires
3(1=0:7) = 4:285 time units and a task misses its deadline.
Thus, to ensure all task deadlines, the utilization cannot be
used as a constant slowdown factor. A constant slowdown
equal to the density,∆ = (1=2+1=3)= 0:83, keeps the sys-
tem feasible [19]. (Note that for this example, the feasibil-
ity test described in [6] also results in the same slowdown of
0:83.) The schedule at a slowdown ofη=∆= 0:83 is shown
in Figure 1(c). Note that, this is not the optimal slowdown
and the schedule has many idle intervals which can be ex-
ploited for further energy savings. A slowdown ofη = 0:75

task

τ1

τ2

time

1.331.33 1.33 1.33

idle

idle time in schedule

0 1 2 3 4 5 6 7 8 9 10

task

10
1.33

0 1 2 3 4 5 6 7 8 9

τ

1τ1

2

time

task
τ

WCET at maximum speed
(a) Task set description: Task arrival times, deadlines and

t ’t’ is the execution
time for the job

1.42

1.42 1.42

1.2

1.2 1.2

1.2

1.2 1.2

1.331.33

1

1

τ2

time

1.2

idle

X -missed
τ1

task
τ2

time (b) Task schedule atη = 0.7

(c) Task schedule atη = 0.83

(d) Task schedule at η = 0.75

1

1 1

1

1

��
��
��

��
��
��

deadline

��
��
��
��

��
��
��

��
��
��

deadline

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

��
��
��

��
��
��

����
����
����

����
����
����

Figure 1. (a) Task arrival times and deadlines
(NOT a task schedule). (b) Task schedule at
a constant slowdown equal to the utilization,
η = 0:70, and job τ1;2 misses its deadline. (c)
Feasible schedule using density as the con-
stant slowdown factor, η = 0:83, however not
optimal. (d) Task schedule at the optimal con-
stant slowdown of η = 0:75.

suffices as shown in Figure 1(c). Note that three units of
workload has to be finished within the interval[0;4] and the
intensity of the interval is 3=4 = 0:75. Thusη = 0:75 is a
lower bound on the constant slowdown andη = 0:75 is the
optimal constant slowdown.

A constant slowdown need not be optimal when the task
deadline is less than the period. As seen in the Figure 1,
there is inherent idle time even at the optimal constant slow-
down. This motivates the computation of uniform slow-
down factors for the tasks. Furthermore, different tasks can
have different power characteristics, and assigning slow-
down factors based on task characteristics can be more en-
ergy efficient.

3. Constant Static Slowdown

In this section, we propose algorithms to compute the
constant slowdown factor under EDF scheduling when the
task deadlines can be less than the period(Di � Ti). First,
we present known feasibility tests for periodic task systems
which form the basis of our algorithms.

Theorem 1 [19] A task set of n periodic tasks, is feasible
under EDF scheduling, if the density,∆ = ∑n

i=1
Ci
Di
� 1:

Theorem 2 [6] A task set of n periodic tasks, arranged in
non-decreasing order of their relative deadlines, is feasible
under EDF scheduling if :

8i
i = 1; :::;n

i

∑
k=1

Ck

Tk
+

1
Di

i

∑
k=1

Tk�Dk

Tk
�Ck� 1 (3)

Theorem 1 and 2 are sufficient feasibility conditions.
These tests are efficient and run inlinear time, however not
optimal. Theorem 3 by Baruahet. al.gives an optimal test
when the system utilization is strictly less than 1.

Theorem 3 [3] A task set is feasible if the intensityof all in-
tervals[0; t], t � tmax=

U
1�U fmax(Ti �Di)g, is less than or

equal to 1. Thus the feasibility problem for synchronous sys-
tems on one processor is solvable in time O(U

1�U fmax(Ti�
Di)g).

By Theorem 3, it follows that the constraints for the feasi-
bility of the task set can be specified as :

8t; t � tmax :
1
t

n

∑
i=1

�
b
t�Di

Ti
c+1

�
�Ci � 1 (4)

The important point to note is that when we consider slow-
down, the values oftmax depends on the utilization under
slowdown,Uη, and is given bytmax=

Uη
1�Uη
fmax(Ti �Di)g.

Zhenge. al. [36] also present a similar result as given by
Theorem 3, where they check the intensity of all intervals
[0; t], t � t 0max=

1
1�U f∑

n
i=1

Ci
Ti
(Ti �Di)g. Note that thetmax

given in Theorem 3 is just an upper bound oft 0max, where
each(Ti �Di) term is approximated by the maximum over
all (Ti�Di) terms.

We extend Theorem 1 and 2 to compute constant slow-
down factors as given by Theorem 4 and 5. The proof of the
results follows directly from Theorem 1 and 2.

Theorem 4 Given n independent periodic tasks, the feasi-
bility of the task-set is guaranteed at a constant slowdown
of η, if 1

η ∑n
i=1

Ci
Di
� 1.

Theorem 5 Given n periodic tasks, arranged in non-
decreasing order of their relative deadlines, the task set is
feasible at a constant slowdown ofη, if

8i
i = 1; :::;n

1
η

i

∑
k=1

Ck

Tk
+

1
Di

i

∑
k=1

Tk�Dk

Tk
�Ck

!
� 1 (5)

Theorem 5 is a stronger result than Theorem 4 [6], how-
ever not optimal. The best slowdown satisfying Theorem
5 can be computed efficiently and we refer to it as theDevi
Test Algorithm (DTA), named after the author who proposed
the feasibility test. Note that feasibility test given by Theo-
rem 3 is optimal, however it does not compute the optimal
slowdown factor. The optimal constant slowdown factor for
a periodic task set can be computed as given by Theorem 6.

Theorem 6 For a synchronous task system,8i : φi = 0, the
maximum intensity over all interval[0; t], 0< t � H, where
H is the hyper-period of the task set, is the optimal constant
slowdown factor.

The proof of the result is present in [13]. It is known that
the intensity function can increase only at discrete points
represented by the setS= ft(i;k) = kTi +Di ji = 1; :::;n;k�
0g [3]. Thus it suffices to check the intensity of the inter-
vals [0; t] with t 2 S. However, the cardinality of the setS
can be exponential in the number of tasks, resulting in a
worst case exponential time complexity.

While we propose algorithms for synchronous task sys-
tems, note that the computed slowdown factors can be used
independent of the task phase. It is known that the maxi-
mum intensity interval of a synchronous task set is an upper
bound on the maximum intensity interval for the system, ir-
respective of the task phase [19, 3]. Thus the results in this
paper can be applied all periodic task systems.

Corollary 1 The slowdown factors computed for a syn-
chronous system imply feasibility of the periodic task set,
independent of the individual task phase.

3.1. Bisection Method

We are interested in an efficient algorithm to compute
the optimal constant slowdown. The feasibility test given by
Theorem 3 is much faster compared to the algorithm given
by Theorem 6. Note however, that the feasibility test cannot
be directly used to compute slowdown factors. We observe
that performing a binary search over the range of slowdown
factors can result in a faster algorithm. It is important to note
that the time valuetmax (in Theorem 3) is proportional to

Uη
1�Uη

, whereUη is the system utilization under slowdown.
As we slowdown the system, the utilization of the system
increases. As the utilization approaches 1,tmax tends to in-
finity. Thus in the worst case, we may have to check all in-
tervals up to the hyper-period of the task set, which requires
worst case exponential time. To avoid the explosion oftmax,
we impose an additional constraint on the processor utiliza-
tion, Uη � 1� εu. Sinceεu is a constant, it boundstmax to
ε�1

u fmax(Ti �Di)g. We present a pseudo polynomial time
algorithm with this additional constraint on utilization.

The algorithm begins with computing upper and lower
bounds on the slowdown factor. The upper bound on the

constant slowdown isηu = min(∆;1), where∆ is the system
density. The lower bound on the constant slowdown is sys-
tem utilization at maximum speed. However, at this slow-
down, the utilization becomes 1 andtmax tends to infinity.
To boundtmax, we compute the slowdownηl which bounds
the utilization to 1� εu and is given byηl =

U
1�εu

. We per-
form a binary search in the range[ηl ;ηu] to compute the
optimal constant slowdown. This technique is called thebi-
section methodand is described in Algorithm 1. In each it-
eration, we test the feasibility of the system at a slowdown
of ηm = ηl+ηu

2 by checking whether the intensity of all in-

tervals[0; t] is� 1, with t � tmax=
Uηm

1�Uηm
fmax(Ti �Di)g.

The feasibility test is given by Algorithm 2. If the system
is feasible, we update the upper bound toηm, ηu ηm. If
the system is infeasible, we update the lower bound toηm,
ηl ηm. This completes one iteration. We compute a new
ηm in each iteration of the algorithm. The number of itera-
tions is polynomial in the binary representation ofη and we
represent this bound bykη. Thus the loop in line 4 of Algo-
rithm 1 can be bounded bykη. Since we bound the proces-
sor utilization,tmax is proportional tomax(Di �Ti) and we
have a pseudo polynomial time algorithm.

Algorithm 1 Bisection-Method(τ1; :::τn)
1: ηsoln 1:0; fInitializationg
2: ηl

U
1�εu

; fLower bound onη : Uηl is 1� εug

3: ηu min(∆;1); fUpper bound onηg
4: for (count 1;count< kη;count count+1) do
5: ηm (ηl +ηu)=2;
6: if (Feasibility-Test(ηm)) then
7: ηu ηm;
8: ηsoln ηm;
9: else

10: ηl ηm;
11: end if
12: end for
13: returnηsoln;

Algorithm 2 Feasibility-Test(η)

1: Uη = 1
η ∑n

i=1
Ci
Ti

; f Utilization at slowdownηg
2: tmax=

Uη
1�Uη

; ftmax value atηg
3: if (Uη > 1� εu) then
4: return FALSE;
5: end if
6: fFeasibility constraints on slowdowng
7: if (8t<tmax : 1

ηi
∑n

i=1(b
t�Di

Ti
c+1) �Ci � t) then

8: return TRUE;
9: else

10: return FALSE;
11: end if

If the utilization at the solution computed by the bisec-
tion method is 1� εu, then we have an approximate solu-
tion. Otherwise, we have the optimum solution to the prob-
lem in pseudo polynomial time, an exponential improve-
ment over the worst case computation time for the optimal
constant slowdown.

4. Uniform Slowdown Factors

In this section, we compute uniform slowdown factors
as opposed to a constant slowdown factor. Underuniform
slowdown, all instances of a task have the same static
slowdown factor, however different tasks can have differ-
ent slowdown factors. Assigning different slowdown fac-
tors based on the task characteristics is energy efficient, es-
pecially when the task-set is diverse with tasks having dif-
ferent power characteristics [1].

4.1. Optimization Problem

We formulate the energy minimization problem as an op-
timization problem. Let~η2 Rn be a vector representing the
task slowdown factors, whereith element of the vector rep-
resents the slowdownηi for taskτi . Let the power consump-
tion of the taskτi as a function of slowdown be represented
by fi(η). The optimization problem is to compute the opti-
mal vectorη� 2 Rn such that the system is feasible and the
total energy consumption of the system is minimized. The
total energy,E, is a function of~η and is given below.

E(~η) =
n

∑
i=1

Ci

Ti

fi(ηi)

ηi
(6)

The constraints set for the feasibility of the system are de-
scribed separately for each method.

4.1.1. Devi Test Optimization The best knownpolyno-
mial sizedconstraints for optimizing the energy function are
those given by Theorem 2. Considering slowdown, the con-
straints are as follows:

8i
i = 1; :::;n;

i

∑
k=1

1
Tk

Ck

ηk
+

1
Di

i

∑
k=1

Tk�Dk

Tk
�
Ck

ηk
� 1 (7)

Since a slowdown factors is the normalized frequency, we
have the implicit constraintηmin� ηi � 1. The above con-
straints form a sufficient feasibility test. The result follows
directly from Theorem 2. We refer to the optimization prob-
lem under the constraints given by Equation 7 as theDevi
Test Optimization (DTO)method.

4.1.2. Constraints for Optimal Solution The constraints
in Equation 7 are linear in the number of tasks, however
the constraints are not optimal. To compute an optimal so-
lution, we consider the intensity constraints given by Theo-
rem 3. The constraintCt given by Equation 8 specifies that

the intensity of interval[0; t] under slowdown be less than
or equal to 1.

Ct :
1
t

n

∑
i=1

(b
t�Di

Ti
c+1) �

Ci

ηi
� 1 (8)

The intensity of an interval depends on the number of task
instances in the interval. The number of instances of task
τi which contribute to the intensity of the interval[0; t] is
given by σi(t) = (b t�Di

Ti
c+ 1) and the execution time of

each instance isCi=ηi . Equation 8 must be true for allt,
0 < t � H, whereH is the hyper-period of the task set.
Note that the constraint set contains only the constraintsCt ,
wheret 2 S= ft(i;k) = kTi +Di ji = 1; :::;n;k� 0g. In addi-
tion, we also have the implicit constraints:ηmin� ηi � 1.

4.1.3. Constraints with bounded processor utilization
To compute the optimal solution, the constraint set con-
tains allCt; t � H, resulting in exponential number of con-
straints. Similar to the bisection method, we constraint the
system utilization byUη � 1� εu, to reduce the constraint
set. This reduces the constraint set to include all constraints
Ct; t � ε�1

u fmax(Ti � Di)g, resulting in pseudo polyno-
mial number of constraints. However, solving a system with
pseudo polynomial constraints is computationally intensive
and it requires time, two orders magnitude larger than the
proposed ellipsoid method [13].

Note that, to check the feasibility of a slowdown vec-
tor~η, we need not check all the constraints in the system. It
suffices to check the constraints given by Theorem 3, where
the number of constraints depend on the utilizationUη. The
number of constraintsvary with each vector and checking
the minimal required constraints for a given vector can lead
to faster algorithms. In the ellipsoid method, the constraints
are not specified explicitly and it is well suited for prob-
lems of this nature.

4.2. Ellipsoid Method (Algorithm)

In this section, we present a high level description of
the ellipsoid algorithm [7]. We begin with a description of
the terms used in the ellipsoid method, and then apply it to
our energy minimization problem. The exact definitions are
given in [8].

4.2.1. Background A weak optimization problemis to
compute a solution that is close-to-optimum under specified
performance guarantees. Anoracle-polynomial time algo-
rithm is an algorithm that calls an oracle algorithm a poly-
nomial number of times. Aweak separation oracleis an al-
gorithm that decides if a vector is in the feasible space and
if not, it generates a hyper-plane that approximately sepa-
rates the feasible space from the vector with some specified
performance guarantees. We state the theorem which solves

the weak optimization problem given that we can solve the
weak separation problem.

Theorem 7 [8] There exists an oracle-polynomial time al-
gorithm that solves the weak optimization problem for every
circumscribed convex body(K;n;R) given by a weak sepa-
ration oracle. ((K;n;R) represents a convex body K2 Rn

and is contained in a sphere with center as the origin and
radius R.)

The algorithm that computes the weak optimum solu-
tion is the ellipsoid method. The ellipsoid method applies
to problems where the feasible space and the optimization
function are convex, and the gradient of the optimization
function can be computed. We show our problem formula-
tion satisfies the above properties for all convex differen-
tial power functions,fi(�) [13]. The main result of the ellip-
soid method is as follows. If we have a subroutine (called
the separation oracle) that checks the feasibility of a vec-
tor ~η and generates a separating hyper-plane if the vector
is not feasible, then we can compute a close to optimum
solution in a polynomial number of calls to the separation
oracle. The detailed theorems and proofs stating this re-
sult are present in [8]. By Theorem 7, we can compute a
weak optimum solution in polynomial number of calls to
the separation algorithm (separation oracle) using the ellip-
soid method.

4.2.2. Separation Oracle (algorithm)We present the
separation oracle used by the ellipsoid method to com-
pute slowdown factors. The separation oracle is based
on the feasibility test given by Theorem 3. Let~η rep-
resent the task slowdown factors. To bound the running
time of the feasibility test, we impose an additional con-
straint on the utilization,Uη � 1� εu. The number of

constraints to check is proportional toUη
1�Uη

. If a con-

straint Cti is violated for vectoru, then the hyper-plane
∇Cti(~η)(~η � u) satisfy the property of the separating
hyper-plane [8].Ct is differentiable and the separat-
ing hyper-plane is computed by evaluating the derivative of
Ct at vectoru. This gives a pseudo polynomial time separa-
tion oracle.

4.2.3. Geometric Interpretation of Ellipsoid Method
We give a geometric interpretation of ellipsoid method. We
start with an ellipsoid (convex body) containing the feasi-
ble space and the given optimization function. We check
the feasibility of the center of the ellipsoid. If it is not feasi-
ble, the separation oracle returns a separating hyper-plane,
H, that cuts the ellipsoid into two halves (feasibility cut). If
the center of the ellipsoid is feasible, we compute the gradi-
ent of the optimization function at the center. This gradient
hyper-plane splits the ellipsoid into two halves (optimal-
ity cut). In both cases, we can identify the non-optimal half

by the property of convex functions. We include the opti-
mal half into a new ellipsoid. Ineach iteration, the volume
of the ellipsoid decreases by a fixed ratio inversely propor-
tional to n. After a polynomial number of steps, the vol-
ume of the ellipsoid is very small (εvolume) and we have
a close-to-optimal solution. The ellipsoid method is ex-
plained in Algorithm 3. NewEllipsoid() constructs the
new ellipsoid and its center as shown in line 12. The de-
tails are given in [7].

Algorithm 3 Ellipsoid Method(τ1; :::τn)
1: Set all elements ofηsoln to 1:0; fInitializationg
2: K sphere around origin to include all feasible slow-

down factors: 0< ηi � 1; fInitial Ellipsoidg
3: ~ηc origin;fCenter of the ellipsoidg
4: while (volume(K) > εvolume) do
5: if (Feasibility-Test(~ηc)) then
6: h ∇E(~η)(~η�~ηc) ; fThe gradient of the energy

function (optimality-cut)g
7: ηsoln ηc;
8: else
9: Let Cx be the violated constraint;

10: h ∇Cx(~η)(~η�~ηc) ; fThe gradient of the con-
straintCx (feasibility-cut)g

11: end if
12: (Knew;ηnew) NewEllipsoid(K;h);
13: (K;ηc) (Knew;ηnew);
14: end while
15: returnηsoln;

Algorithm 4 Feasibility-Test(~η):

Uη = ∑n
i=1

1
ηi

Ci
Ti

; fUtilization at slowdown~ηg
tmax=

Uη
1�Uη

; ftmax value at~η g
Constraint Set is :
Cu : ∑n

i=1
1
ηi

Ci
Ti
� 1� εu fUtilization constraintg

8t<tmax; Ct : 1
t ∑n

i=1(b
t�Di

Ti
c+1) � Ci

ηi
� 1 fFeasibility con-

straintsg
8n

i=1 ; Ci : ηmin� ηi � 1 fProcessor constraintsg
if (all constraints are satisfied)then

return TRUE;
else

return FALSE;
end if

5. Experimental Results

Simulation experiments were performed to evalu-
ate our proposed techniques. We considered several task
sets, each containing 10-20 randomly generated tasks. We

note that such randomly generated tasks are a common val-
idation methodology in previous works [29, 2, 1, 6].
Tasks were assigned a random period and WCET in the
range [20000,50000] and [100,5000] respectively. We
tried to keep the hyper-period low by rounding the pe-
riods to a multiple of 1000. To generate task with dead-
lines smaller than the period, the deadlines were de-
creased by 0% to 25% of the task period, in steps of
5%.

We use a power model based on the dynamic power con-
sumption of CMOS circuits [25] as given by Equations 1
and 2. We note, however that our algorithm can be applied
to more sophisticated power models, particularly as leak-
age becomes a significant contribution [5]. Recent proces-
sors have low operating voltages, and we use an operating
voltage range of 0:6V and 1:8V. The threshold voltage is as-
sumed to be 0:36V andα= 1:5. We have normalized the op-
erating speed and support discrete voltage levels in steps of
0:05 in the normalized range.

We compared the energy consumption for the following
techniques presented in the paper:

� Devi Test Algorithm (DTA)

� Bisection Method (BM)

� Devi Test Optimization (DTO)

� Ellipsoid Method (EM)

We setεu to a value of 0:01 in bothBM and EM. This
results in utilizing up to 99:9% of the processor, while
having practical run-times. The computed slowdown fac-
tor was mapped to the smallest discrete level greater than
or equal to it. Note that DTA and DTO are sufficient feasi-
bility tests and a feasible task set can be declared as infea-
sible, in which case we execute all tasks at the maximum
speed (η = 1).

5.1. Identical Power Characteristics

The slowdown factor can be efficiently computed by the
DTA method, with a run time polynomial in the number
of task. However, it is not energy efficient and has max-
imum energy consumption. The computation of the opti-
mal intensity inspects all intervals up to the hyper-period of
the task set which can be very large. In our experiments, in
spite of setting task periods as multiples of 1000, the hyper-
period interval was too large to evaluate the intensity of all
intervals up to the hyper-period. With tasks having identi-
cal power characteristics, theBM andEM have very close
energy consumption. Similar is the case forDTA andDTO.
Since, theBM computes a near optimal slowdown, the slow-
down computed byBM is always better thanDTA.

Figure 2 shows the percentage energy gains of theBM
overDTA, as a function of the utilization at maximum speed

Identical Power Characteristics

20 30 40 50 60 70 80 90(%) Utilization
0

5
10

15
20

25

(%) Deadline Reduction

0
5

10
15
20
25
30
35

(%) Energy gains

Figure 2. Percentage Energy savings of the
Bisection Method (BM) over the Devi Test Al-
gorithm (DTA) as the utilization under maxi-
mum speed is varied.

and the deadline reduction. All tasks are assumed to exe-
cute up to their WCET. It is seen that theBM outperforms
DTA as the deadline are made stricter. With a decrease in
relative task deadlines, the slowdown factor computed by
DTA shoots up and tasks are executed at higher speed con-
suming more energy. TheBM method continues to com-
pute near optimal slowdown factor to result is energy gains.
For higher utilization, a small decrease in relative deadline
makes the system infeasible underDTA and we setη = 1.
However, the slowdown computed byBM continues to in-
crease and the gains seem to decrease at utilization of 80%
and 90%. At lower utilization (at maximum speed), the den-
sity continues to increases with a decrease in deadline and
hence there is a steady increase in gains. The gains seem
to lower as utilization decreases due to the relation between
power and slowdown. An improvementδ in the slowdown
factor, results in more gains when the slowdown is higher.
For this reason, the gains seem to decrease as the utiliza-
tion falls below 60%. Thus in all cases,BM performs better
with a decrease in deadline. We see as much as 35% en-
ergy gains over the DTA with the average energy savings
being 20%.

5.2. Varying Power Characteristics

Due to the diverse nature of the tasks in a system, tasks
can have distinct power characteristics [1]. The problem
formulation in Section 4 works for all convex differential
power characteristics. However, for experimental results we
restrict power characteristics to belinear [1], where tasks
have a constant power coefficient. We say a task has power
coefficientk to represent a task with a power consumption
k times the base case. This is equivalent to tasks having a

Bimodal Distribution

1.5 2 2.5 3 3.5 4Power Coefficient
0

5
10

15
20

25

(%) Deadline Reduction

0
5

10
15
20
25
30
35

(%) Energy gains

Uniform Distribution

1.5 2 2.5 3 3.5 4Power Coefficient
0

5
10

15
20

25

(%) Deadline Reduction

0
5

10
15
20
25
30
35

(%) Energy gains

Figure 3. Percentage Energy gains of the
Ellipsoid Method (EM) over the Devi Test
Optimization method (DTO) for varying task
power characteristics.

switching capacitance,Ce f f in Equation 1,k times the base
case. The workload for each task is set to its worst case exe-
cution time. We consider the following two distributions for
the power coefficients:

� Bimodal Distribution : where there are two types of
tasks in the system, with 50% having a power coeffi-
cient of 1 and the others having a power coefficientk.

� Uniform Distribution , where the power function co-
efficients of the tasks are uniformly distributed be-
tween 1 andk. We varyk in the range[1;4].

We compare the energy consumption of theEM and
DTO for task sets with a utilization between 60%-80% and
execution time set to their WCET. Figure 3 shows the per-
centage gain ofEM over DTO. Since both methods com-
pute slowdown factors considering the task power charac-
teristics, the energy gains do not vary with the power coeffi-
cientk and its distribution. The energy savings depends on
the amount of slack that the slowdown method can identify.
As the deadline is decreased,DTO identifies less slack and
theEM performs better. TheEM uses a near optimal feasi-
bility test and utilizes the maximum available slack. Similar
gains are seen for the case of uniform and bimodal distribu-
tion of power coefficients.

5.3. Dynamic Slowdown

Dynamic reclamation techniques results in further en-
ergy savings by reclaiming the run-time slack that arises due
to variations in the task execution time. We use the Generic
Dynamic Reclaiming Algorithm(GDRA) [1] by Aydin et.
al. The authors have shown that a run-time slack of a higher
priority task can be utilized by lower priority jobs, while en-
suring all task deadlines. The details are present in [1].

We vary the best case execution time (bcet) of a task from
100% to 10% of its WCET (wcet). Tasks were generated by
a Gaussian distribution with mean,µ= (wcet+bcet)=2 and
a standard deviation,σ = (wcet� bcet)=6. We performed
experiments on tasks with varying utilization and power
characteristics and observed the same trend. As before, we
compareBM with DTA for the case of identical power char-
acteristics. For the case of varying task power characteris-
tics, we compareEM with DOA. In all the techniques, we
use theGDRAtechnique over the static slowdown factors to
compute dynamic slowdown. The gains are shown in Fig-
ure 4. As expected, the energy gains increase with the de-
crease in deadline. It is seen that the average gains steadily
increase as the execution time decreases. Thus, identifying
the maximum slack through the computation of static slow-
down factors helps in dynamic reclamation as well.

5.4. Computation Time

The computation times for the various techniques are of
different orders of magnitude. In our examples, the hyper-
period was usually too large and computing the optimal in-
tensity was not possible.BM computed the solution in or-
ders of milliseconds. It took 1 to 10 seconds to compute the
solution usingEM. Each iteration of the ellipsoid method
requires matrix computations to compute the new ellipsoid
and its center, which is computation intensive. However,
note that the matrix computations inEM require time poly-
nomial in the number of tasks, making our technique scal-
able. TheDTA runs in linear time and the computation is
negligible. The computation time forDTO is also small,
since it has only linear number of constraints. We conducted
the experiments on a Sun workstation. Since the computa-
tions are performed off-line, we justify a computation time
of few milliseconds to seconds for energy gains.

6. Conclusions and Future Work

We have presented algorithms to compute static slow-
down factor under EDF scheduling, when the task deadlines
are smaller than the task periods. We see that identifying
slack by means of static slowdown factors results in energy
savings through static and dynamic slowdown. We proposed
the bisection method to compute constant static slowdown

Dynamic Slowdown with identical task power coefficients

10 20 30 40 50 60 70 80 90 100(%) BCET Variation
0

5
10

15
20

25

(%) Deadline Reduction

0
10
20
30
40
50
60

(%) Energy gains

Dynamic Slowdown with varying task power characteristics (k=2.5)

10 20 30 40 50 60 70 80 90 100(%) BCET Variation
0

5
10

15
20

25

(%) Deadline Reduction

0
10
20
30
40
50
60

(%) Energy gains

Figure 4. Percentage Energy gains with Dy-
namic Slack Reclamation scheme. The top
graph compares the gains of BM over DTA
with the dynamic reclamation scheme. The
gains of EM over DTO along with dynamic
reclamation are shown in the bottom graph.

factors and an algorithm based on ellipsoid method to com-
pute uniform slowdown factors. Experimental results show
on an average 20% energy gains over the known slowdown
techniques. The average gains extend to 40% with dynamic
slowdown. The algorithms have a pseudo polynomial time
complexity and are practically fast. The techniques are en-
ergy efficient and can be easily implemented in an RTOS.
This will have a great impact on the energy utilization of
portable and battery operated devices.

In our future work, we plan to extend these techniques to
compute optimal discrete task slowdown factors.

Acknowledgments

The authors would like to specially thank George Lueker
for explaining the ellipsoid method and it applicability to
the problem. We acknowledge support from National Sci-
ence Foundation (Award CCR-0098335) and from Semi-
conductor Research Corporation (Contract 2001-HJ-899).
We would also like to thank the reviewers and the mem-
bers of CECS for their comments on the paper.

References

[1] H. Aydin, R. Melhem, D. Moss´e, and P. M. Alvarez. Deter-
mining optimal processor speeds for periodic real-time tasks
with different power characteristics. InProceedings of Eu-
roMicro Conference on Real-Time Systems, Jun. 2001.

[2] H. Aydin, R. Melhem, D. Moss´e, and P. M. Alvarez. Dy-
namic and aggressive scheduling techniques for power-
aware real-time systems. InProceedings of IEEE Real-Time
Systems Symposium, Dec. 2001.

[3] S. K. Baruah, R. R. Howell, and L. E. Rosier. Algorithms
and complexity concerning the preemptive scheduling of pe-
riodic, real-time tasks on one processor. InIEEE Transac-
tions on Computers, 1991.

[4] G. C. Buttazzo. Hard Real-Time Computing Systems.
Kluwer Academic Publishers, 1995.

[5] J. A. Butts and G. S. Sohi. A static power model for archi-
tects. InIntl. Symposium on Microarchitecture, 2000.

[6] U. Devi. An improved schedulability test for uniprocessor
periodic task systems. InProceedings of EuroMicro Confer-
ence on Real-Time Systems, Jun. 2003.

[7] M. Grotschel, L. Lovasz, and A. Schrijver. Geometric algo-
rithms and combinatorial optimization. InCombinatorica,
pages 169–97, 1981.

[8] M. Grotschel, L. Lovasz, and A. Schrijver.Geometric Al-
gorithms and Combinatorial Optimization. Springer Verlag,
1988.

[9] F. Gruian. Hard real-time scheduling for low-energy using
stochastic data and dvs processors. InProceedings of Inter-
national Symposium on Low Power Electronics and Design,
pages 46–51, Aug. 2001.

[10] F. Gruian and K. Kuchcinski. LEneS: task scheduling for
low-energy systems using variable supply voltage proces-
sors. InProceedings of the Asia South Pacific Design Au-
tomation Conference, Jan. 2001.

[11] Intel StrongARM Processor. Intel Inc.
(http://www.arm.com/armtech/StrongARM).

[12] Intel XScale Processor. Intel Inc.
(http://developer.intel.com/design/intelxscale).

[13] R. Jejurikar and R. Gupta. Optimized slowdown in real-time
task systems. InCECS Technical Report #04-10, University
of California Irvine, Apr. 2004.

[14] R. Jejurikar and R. Gupta. Dual mode algorithm for en-
ergy aware fixed priority scheduling with task synchroniza-
tion. In Workshop on Compilers and Operating System for
Low Power, Sept. 2003.

[15] R. Jejurikar, C. Pereira, and R. Gupta. Leakage aware
dynamic voltage scaling for real-time embedded systems.
In Proceedings of the Design Automation Conference, Jun.
2004.

[16] W. Kim, J. Kim, and S. L. Min. A dynamic voltage scaling
algorithm for dynamic-priority hard real-time systems using
slack time analysis. InProceedings of Design Automation
and Test in Europe, Mar. 2002.

[17] W. Kwon and T. Kim. Optimal voltage allocation techniques
for dynamically variable voltage processors. InProceedings
of the Design Automation Conference,pages 125–130, 2003.

[18] Y. Lee, K. P. Reddy, and C. M. Krishna. Scheduling tech-
niques for reducing leakage power in hard real-time systems.
In EcuroMicro Conf. on Real Time Systems, Jun. 2003.

[19] J. W. S. Liu.Real-Time Systems. Prentice-Hall, 2000.
[20] J. Luo and N. Jha. Power-conscious joint scheduling of peri-

odic task graphs and a periodic tasks in distributed real-time
embedded systems. InProceedings of International Confer-
ence on Computer Aided Design, pages 357–364, Nov. 2000.

[21] P. Mejia-Alvarez, E. Levner, and D. Mosse. Adaptive
scheduling server for power-aware real-time tasks.ACM
Transactions on Embedded Computing Systems, 2(4), Nov.
2003.

[22] P. Pillai and K. G. Shin. Real-timedynamic voltage scaling
for low-power embedded operating systems. InProceedings
of 18th Symposium on Operating Systems Principles, 2001.

[23] G. Quan and X. Hu. Energy efficient fixed-priority schedul-
ing for real-time systems on variable voltage processors. In
Proceedings of the Design Automation Conference, pages
828–833, Jun. 2001.

[24] G. Quan and X. Hu. Minimum energy fixed-priority schedul-
ing for variable voltage processors. InProceedings of Design
Automation and Test in Europe, Mar. 2002.

[25] J. M. Rabaey, A. Chandrakasan, and B. Nikoli´c. Digital In-
tegrated Circuits. Printice Hall, 2003.

[26] C. Rusu, R. Melhem, and D. Mosse. Maximizing rewards
for real-time applications with energy constraints. InACM
Transactions on Embedded Computer Systems, accepted.

[27] C. Rusu, R. Melhem, and D. Mosse. Maximizing the system
value while satisfying time and energy constraints. InPro-
ceedings of IEEE Real-Time Systems Symposium, Dec. 2002.

[28] Y. Shin and K. Choi. Power conscious fixed priority schedul-
ing for hard real-time systems. InProceedings of the Design
Automation Conference, Jun. 1999.

[29] Y. Shin, K. Choi, and T. Sakurai. Power optimization of
real-time embedded systems on variable speed processors. In
Proceedingsof International Conferenceon Computer Aided
Design, pages 365–368, Nov. 2000.

[30] Transmeta Crusoe Processor. Transmeta Inc.
(http://www.transmeta.com/technology).

[31] N. Weste and K. Eshraghian.Principles of CMOS VLSI De-
sign. Addison Wesley, 1993.

[32] F. Yao, A. J. Demers, and S. Shenker. A scheduling model
for reduced CPU energy. InProceedings of IEEE Sympo-
sium on Foundations of Computer Science, pages 374–382,
1995.

[33] H. Yun and J. Kim. On energy-optimal voltage scheduling
for fixed-priority hard real-time systems.Trans. on Embed-
ded Computing Sys., 2(3):393–430, 2003.

[34] F. Zhang and S. T. Chanson. Processor voltage scheduling
for real-time tasks with non-preemptible sections. InPro-
ceedings of IEEE Real-Time Systems Symposium, Dec. 2002.

[35] Y. Zhang, X. S. Hu, and D. Z. Chen. Task scheduling and
voltage selection for energy minimization. InProceedings of
the Design Automation Conference, 2002.

[36] Q. Zheng and K. G. Shin. On the ability of establishing real-
time channels in point-to-point packet-switched networks.
IEEE Transactions on Communications, 42(2/3/4):1096–
1105, Feb/Mar/Apr. 1994.

