
GALS 2005 Preliminary Version

A Verification Approach for GALS Integration
of Synchronous Components

F. Doucet, M. Menarini, I. H. Krüger and R. Gupta 1

Computer Science and Engineering
University of California, San Diego

La Jolla, California, USA

J.-P. Talpin 2

IRISA/INRIA
Rennes, France

Abstract

Starting with modules described in Signal synchronous programming language, we
present an approach to verification of GALS systems. Since asynchronous parts of
a GALS system can not be described in Signal, we use a mixture of synchronous
descriptions in Signal and asynchronous descriptions in Promela. Promela is the
input language to the SPIN asynchronous model checker. This allows us to achieve
globally asynchronous composition (Promela) of locally synchronous components
(Signal). Here we present three key results: first, we present a translation from Sig-
nal modules to Promela processes and prove their equivalence. Second, we present a
technique to abstract a communication bus designed for GALS, the Loosely Time-
Triggered Architecture (LTTA) bus, to a finite FIFO channel. The benefit of this
abstraction is improved scalability for model checking larger specifications using
SPIN. Third, we prove the trace equivalence of the model of the GALS system in
Promela and a hardware implementation of it. This allows the verification of GALS
systems based on the Promela model. We then use our technique to verify a central
locking system for automobiles built on a GALS architecture using the LTTA.

Key words: Specification, Verification, Synchronous Languages,
Model Checking, Signal, Spin, GALS.

1 Email: {fdoucet,mmenarini,ikrueger,rgupta}@ucsd.edu
2 Email: Jean-Pierre.Talpin@irisa.fr

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

F. Doucet, M. Menarini, I. Krüger, R. Gupta and J.P. Talpin

1 Introduction

Designing complex system-on-chip devices containing multiple cores and mul-
tiple clock domains presents challenging modeling and verification problems.
Traditionally microchips are developed using synchronous languages that help
reduce the complexity of the design verification tasks. However, the physical
characteristics of deep sub-micron technologies make it very difficult to have
predictable communication delays between computational modules. There-
fore, it is difficult to achieve timing closure for the deployement of synchronous
systems using those technologies. Globally asynchronous/locally synchronous
(GALS) architectures are attractive for a number of reasons for use in on-
chip system designs [7]. They provide asynchronous communication mecha-
nisms that are not affected by communication latency. However, modeling
and verification of such systems can be difficult due to the diversity of the
component-level verification used.

In this paper, we address the problem of verification of GALS deployment
of synchronous intellectual property (IP) modules specified using the Signal
synchronous language [4]. Synchronous languages provide a way to specify
systems as transition functions, where timing constraints can be put on when
these transitions are taken. We use the Spin model checker [8] to verify syn-
chronous modules in an asynchronous environment. Spin has been successfully
used to verify asynchronous software systems. Our decision to use Spin in-
stead of other model checkers is based on the two capabilities it provides: (1)
efficient model checking algorithms for asynchronous semantics using partial
order reduction (2) the ability to inline calls to external C functions in a Spin
model, and treat them as black boxes. The asynchronous semantics of Spin
enables us to efficiently model the GALS integration environment of several
embedded synchronous components. We take advantage of partial order re-
duction to reduce the state space needed for the verification of the GALS
model. Furthermore, for quick and efficient path to verification, we can take
the output of the Signal compiler, a C function that simulates the synchronous
reaction, and call it into a Promela process (Promela is the input language to
Spin).

The contribution of this paper is a verification approach for synchronous
component integration in a GALS architecture. First, we present a transla-
tion from a Signal module to a Promela process, and show the correctness of
our translation by proving trace equivalence. Next, we describe the Loosely
Time-Triggered Architecture (LTTA) bus used for communication in GALS
architectures. We abstract this bus to a FIFO channel and use model check-
ing to prove their equivalence. The abstraction increases the size of GALS
architectures we are able to verify using Spin. Using the abstraction, we can
build and verify a Promela model of a GALS architecture that includes the
synchronous components. Finally, we prove that our GALS model in Promela
is trace equivalent to the hardware implementation of a GALS system using

2

F. Doucet, M. Menarini, I. Krüger, R. Gupta and J.P. Talpin

the LTTA bus. The combined use of Signal for specifications and of Spin for
verification offers an effective and efficient combination for the verification of
GALS architectures. Our results show that there is a possible automatic path
that can be used to verify GALS deployment of synchronous specification.

This paper is organized as follows. In Section 2 we review the related work.
In Section 3 we present the synchronous model of computation, as well as the
Signal language and its semantics. In Section 4 we present our verification
strategy for verifying synchronous components using Spin. In Section 5 we
show our approach to verifying GALS architectures. In Section 6, we present
an example of an automobile central locking system, and show how using our
method it is possible to verify a central property of the system. We describe
model checking performance statistics for this example. We then discuss future
work and conclude in Section 7.

2 Related Work

A central challenge in designing system-on-chip using IP blocks is the problem
of communication latency [11]. This fact makes the use of GALS architectures
an appealing compromise between purely synchronous and asynchronous im-
plementations. Many different architectures have been proposed over time to
connect different synchronous components into a GALS system [12]. Carloni
et al. [6] have proposed a latency-insensitive architecture which separates
communication and computation. By means of a particular protocol, various
synchronous components wait for all the data to be present on their input be-
fore executing any operation. In this architecture, problems due to the timing
requirements of the physical clock are solved by logic blocks called relay sta-
tions. Those blocks contain latches, which are inserted on long communication
lines that cross clock domains. A component that is insensitive to latency is
called a patient process. If a process is not patient, it is possible to arbitrarily
stop its clock by using a wrapper that waits until all data values are present,
and latch them if necessary. Using this approach, component interactions are
separated from computation and the system can be described using a syn-
chronous language. However, as pointed out in [13], the latency-insensitive
approach introduced by Carloni is limited to a single clock. If multiple sys-
tems with different clocks are interconnected, some delay must be inserted to
slow down the faster ones to meet the slowest subsystem. This solution has
potential for improvement because it slows down all the fast modules.

Ramesh et al. [10] present a tool set for modeling and verification of GALS
architectures in the context of system-on-chip architectures. They use the
Communicative Reactive Processes (CRP) language, a dialect of Esterel [5],
and verify the architecture using Spin. To take advantage of the asynchronous
model checking, they use a direct translation of CRP to Promela.

In this work, we propose an approach that builds on the work of system
modeling using the Signal synchronous language [2]. We also use the Spin

3

F. Doucet, M. Menarini, I. Krüger, R. Gupta and J.P. Talpin

model checker, but we make use of a bus architecture abstraction to improve
the scalability of the verification. We leverage the work of Carloni by using the
wrapper and the relay stations proposed in the paper [6] for our equivalence
between hardware implementation and Promela model.

3 The Synchronous Model of Computation

The synchronous model of computation implements the synchrony hypothesis
[2] [5], which states that all components in a system synchronously (1) sample
inputs, (2) fire, and (3) write outputs. All the reactions are instantaneous
and, when observing the system, one sees the inputs at the same time as
the outputs. In that sense, the synchrony hypothesis eases conceptualization
because one does not have to think about all the possible process interleavings,
potentially reducing the system state space. Note that, in the synchrony
hypothesis, an observer cannot observe the causality relations between inputs
and outputs. Examples of systems that can be specified efficiently in this
paradigm are data-flow controllers used in embedded real-time applications.

Signal [4] is a language that implements the synchrony hypothesis. It is
used for specification of data-flow equations over signals and the synchronous
composition of these equations into a reactive system.

3.1 Tagged Model

The Signal semantics uses a tagged model, which is equivalent to the trace
model, augmented with time annotations. In the tagged model, a signal is
denoted by a sequence of tagged valuations (t, v) where v is a value and t is
the symbolic time at which this value is sampled. This is a sequence where
each event is tagged with a measure of the time at which it is recorded. The
tag sequence t1,..,n of a signal s is called its clock, denoted by sτ . For a signal
s, the flow of values is sampled according to clock sτ .

x : •t1 • •

y : •t1 •t2 • • •

z : •t3 • • •

Fig. 1. Example of a multi-clocked behavior: the boxes represent two unrelated
timing domains

Example 3.1 Figure 1 depicts a behavior b over three signals named x, y and

z. The two frames depict two different timing domains. Signal x and y belong

to the same timing domain: x is a down-sampling of y where its events are

4

F. Doucet, M. Menarini, I. Krüger, R. Gupta and J.P. Talpin

synchronous to odd occurrences of events along y, sharing those specific tags.

The signal z belongs to a different timing domain. Its tags are not ordered

with respect to the clock of x, e.g. xτ 6≤ zτ and zτ 6≤ xτ nor to the clocks of y.

x:= y$1 init v
y : •t1,y1 •t2,y2 •t3,y3

x : •t1,v •t2,y1 •t3,y2

x:= y default z

y : •t2,y2 •t3,y3

z : •t1,z1 •t3,z3

x : •t1,z1 •t2,y2 •t3,y3

x:= y when z

y : • •t3,y3

z : •t1,1 •t2 ,0 •t3,1

x : •t3,y3

Fig. 2. Behaviors of single Signal equations

Let us now illustrate the behavior of a subset of the basic Signal equa-
tions. Figure 2 depicts the behavior of statements that are commonly found
in specifications encoded with Signal. The first one is x:= y$1 init v, which
initially defines x to v and subsequently by the previous value of y. The equa-
tion x:= y default z defines x by y when y is present and by z otherwise.
Equation x:= y when z defines x by y when z is true. As one can see, the
current value of the signals’ clocks defines if the reaction can fire or not.

3.2 Transition System

We now define the semantics of the Signal language using a transition system.

Definition 1 (Transition System) Let V be a set of variables over domain

D. We define a transition system M over V to be a tuple 〈S, T, s0〉 where

S : V → D is a set of states, T ⊆ S ×S a transition relation and s0 an initial

state.

Each state represents a possible valuation of the variables. Two states
s ∈ S and s′ ∈ S are the same if the variables have the same exact values
s(V) = s′(V).

Definition 2 (Run) Let M be a transition system. We define a run of a

transition system to be a finite or infinite sequence of states π = s0s1....

A run is a sequence of states; a trace is a sequence of observations on a
subset of the variables. These variables can represent input and output ports,
while the internal variables would be hidden from an observer.

Definition 3 (Language) Let M be a transition system. We define the lan-

guage of M , denoted L(M), to be the set of all possible runs of M .

5

F. Doucet, M. Menarini, I. Krüger, R. Gupta and J.P. Talpin

3.3 Signal Semantics

We are now ready to express the semantics of the Signal language and its
tagged model as a transition system. A Signal process is the conjunction of
a set of basic Signal statements, listed Table 1 along with their interpretation
semantics. Each variable v in the Signal specification is represented by two
variables in the transition system: (1) variable v for holding the data, ranging
over the same domain as in the specification, and (2) variable vτ for the clock,
ranging over a binary domain to indicate presence or absence of a value in v.
In a run, we denote the k-th value in the sequence by vk and the k-th clock
by vτk.

The statements in Table 1 are divided into three categories. Monochronous
(“single-clocked”) equations require all input and output signals to be present
at the same time. Polychronous or multi-clocked equations do not require all
signals to be present; they operate depending on which signals are currently
present. The clock relations establish the timing constraints on signals; they
define the presence and absence of signals.

Table 1
Primitive constructs in the Signal language

Name Syntax Interpretation Semantics

Monochronous operations

Arithmetic Z:= X op Y Xτk ↔ Yτk ↔ Zτk, Zk := op(Xk, Yk)

Xτ = Yτ = Zτ

Delay/register Z:= X$1 Xτk ↔ Zτk, Zk := Xk−1

Xτ = Zτ

Polychronous operations

Sampling Z:= U when B Bτk ∧ Bk ∧ Uτk ↔ Zτk, Zk := Uk

Choice Z:= U default V (Uτk ↔ Zτk, Zk := Uk) ∨

(¬Uτk ∨ Vτk ↔ Zτk, Zk := Vk)

Synchronous composition P | Q see Sub-Section 3.3.4

Clock relations

Clock extraction Z:= X̂ Zk ↔ Xτk

Clock equality X =̂ Y Xτ = Yτ

Upper bound clock Z =̂ X +̂ Y Xτk ∨ ∧Yτk ↔ Zτk

Lower bound clock Z =̂ X *̂ Y Xτk ∧ Yτk ↔ Zτk

3.3.1 Monochronous Operations

The synchrony hypothesis assumes that, for a reaction, all inputs and outputs
are present at the same time and the reaction computes instantaneously. In

6

F. Doucet, M. Menarini, I. Krüger, R. Gupta and J.P. Talpin

Signal, monochronous operations implement the synchrony hypothesis. All
arithmetic operations are monochronous. The statement Xτk ↔ Yτk ↔
Zτk, Zk := op(Xk, Yk) expresses that at cycle k, by double implication, if one of
the inputs or outputs is present, then all of them are present. This means that
the clocks of the input and the output signals need to be the same, denoted
by Xτ = Yτ = Zτ . When the clock predicate is satisfied and all input values
are present and known, the computation of Zk can fire. The computation is
instantaneous and the value of the output is present at cycle k and can be
used in other synchronous reactions. The delay operation, also monochronous,
assigns the previous value of X, Xk−1 to Yk. Again, the clocks are the same,
if an input is present then an output is present, but in this case the values are
delayed by one sampling instant. This is analogous to a synchronous register.

3.3.2 Polychronous Operations

Polychronous operations define relations on signal flows that are not syn-
chronous. Clock presence or absence can be used to build control-flow in a
specification where the clocks are used to describe the timing of specific events.
In some sense, the clocks are guarding the possible polychronous transitions.
The first kind of polychronous statement is the sampling operation. A signal
Z samples a signal U when a sampling condition, represented by signal B,
is both present and true. Otherwise, on signal Z at instant k, there is no
value Zk available and its clock, Zτk is false. When the sampling condition
is false, we do not care about the presence or absence of U . Again, this is a
double implication. So if somewhere in the specification Zk is required, then
the input needs to be present and the sampling condition will be true. The
polychronous second operation is the choice operation. At an instant k, a
signal Z is assigned a value Uk if Uk is present; otherwise a value Vk if Uk is
absent and Vk is present. Notice that U has priority over V . This operation
is considered polychronous because an output can be present when only one
of the two inputs is present.

3.3.3 Clock Relations

Clock relations are used to define the control flow through a Signal spec-
ification. The encoding of conditional statements (“if-then-else”) into clock
relations results in a “clock tree”, a hierarchical organization of the clocks that
control the branches of the nested conditionals. In the next two paragraphs
we explain the notion of clock tree as well as the clock relation statements
used to encode conditionals in more detail.

The clock tree expresses the relationships between the clocks of all signals
in a program. The root of the tree ticks every time some clock is present;
this is the most fine-grained clock. As one goes down the tree, each node is
present only for a subset of the root ticks. The tree is built such that the
control flow of a specification is described by the presence or the absence of
control signals: the nodes in the tree are the control signals. For instance, an

7

F. Doucet, M. Menarini, I. Krüger, R. Gupta and J.P. Talpin

“if-then-else” will be represented by two complementary clocks: one will be
present only when it is time to take the “then-condition” and the other will be
present only when it is time to take the “else-condition”. From the root, these
two nodes are on different branches – meaning that both clocks will never be
present at the same time.

Now, let us describe the Signal statements in Table 1 for clock relations.
The statement for clock extraction, Z:=̂ X, is used to specify that signal Z

describes the clock of X. This statement enables a designer to explicitly
extract the clock of a signal X so that it can be used in conditional statements.
For instance, one can attach some action on the presence (Z == 1) or absence
(Z == 0) of X. The statement for clock equality, X =̂ Y is used to specify a
synchrony constraint on two signals. This means that both signals X and Y

are exactly present or absent at the same time.

The “upper bound clock” and “lower bound clock” statements are used to
define constraints on the clock tree. The first one, Z =̂ X +̂ Y, defines the
clock of signal Z to be the upper bound of the clocks of signals X and Y .
This effectively is the union of two clocks, resulting in Z being present every
time one of the two inputs X or Y is present. This statement is the timing
behavior of the choice operation. The second statement, Z =̂ X *̂ Y defines
the clock of signal Z to be the lower bound of the clocks of X and Y . This
effectively is the intersection of the two clocks, resulting in a signal Z present
only when both signals X and Y are present. This timing behavior is close
to the timing behavior of the sampling operation, except that the sampling
statement requires the second input to have a true value.

3.3.4 Synchronous Composition

The synchronous composition operation P | Q is a polychronous operation
in the sense that it can be multi-clocked. In Signal, each statement is a con-
current process; this means it is a small transition system. The behavior of a
Signal specification is a transition system which is the synchronous composi-
tion of the transition systems of its components. To translate a specification,
every statement is translated and then added in a conjunction that forms the
total system behavior. This is effectively the synchronous composition of all
statements. The synchronous composition of all Signal statements is obtained
inductively and the result is the transition system of the Signal specification.

Definition 4 (Synchronous Composition) Let M1 = 〈S1, T1, s10
〉 and M2 =

〈S2, T2, s20
〉 be transition systems over a set of variables V . We define their

synchronous composition as being a tuple 〈S⊗, T⊗, s⊗0
〉 where S⊗ = S1 × S2,

T⊗ = {(s1, s2) → (s′1, s
′

2) | ∃(s1, s
′

1) ∈ T1∧∃(s2, s
′

2) ∈ T2}, and s⊗0
= (s10

, s20
).

In the composed system, to have some resulting behavior, the clocking
constraints and the data values shared by P and Q have to agree. This means
that if the two transition systems share variables, composition can eliminate
many possible behaviors. Considering that clocks are variables, one has to

8

F. Doucet, M. Menarini, I. Krüger, R. Gupta and J.P. Talpin

consider the effects of composition for the temporal behavior. The presence
or absence of a signal is defined by the relation of its clock with the clock of
other signals in the system. When this relation is a function, the clock can
be calculated (e.g. starting from the status and value of input signals). This
calculation is used to build a control-flow graph and to generate sequential
code [1]. The constraints are specified using these clock relations.

3.4 Translation to Transition System

We now consider the translation of a Signal specification to a transition system.
Recall that the control flow through the Signal program is encoded as a clock
tree. This clock tree defines a “firing schedule” for the transitions of the
transition system we create. The firing schedule is the hierarchical composition
of all clock relations in the system. Every time a synchronous reaction is
triggered, the clock tree is evaluated to find which statements have to fire.

In a specification, each synchronous module has its own local clock tree,
with its root defining the most general firing condition for the module. Now,
if we take a module and compose it with another module, it is possible that
the first module has to stay idle while the second module fires. The standard
example, again, is the conditional statement, encoded as the synchronous
composition of two synchronous “modules” – one for each branch of the con-
ditional. Precisely one of these modules can fire – the branch that is taken
in the execution of the conditional; the other module representing the other
branch has to idle since its local root node in not in the branch.

To enable synchronous modules to be idle, we extend the semantic model
to include stuttering steps. A stuttering step is represented by ⊥ and presents
itself to an observer as a reaction where all signals are absent. To accommodate
this we need to add stuttering transitions in the transition system that set all
the clock variables to zero – meaning that there is no input and no output to
a reaction.

Definition 5 (Stuttering Step) Let M be a synchronous transition system,

and clk(M) be the set of clock variables in M . We define a stuttering state

as being a state where all variables in clk(M) are zero. A stuttering step is a

transition entering a stuttering state.

Therefore, our transition system will allow stuttering runs, where a module
can take an arbitrary number of stuttering steps.

Definition 6 (Stuttering Run) Let M be a transition system. A stuttering

run for a M is a run which allows an arbitrary number of stuttering steps to

be taken between two states.

We define each stuttering run πs = s0,⊥,⊥,⊥,⊥, s1,⊥, ...,⊥, s2, ... to be
equivalent to the run π = s0, s1, s2, ... obtained from πs by removing all stut-
tering (⊥) states.

We now describe how each equation of Table 1 can be translated to a

9

F. Doucet, M. Menarini, I. Krüger, R. Gupta and J.P. Talpin

transition system. Figure 3 shows, for each Signal statement, an automa-
ton describing the operation along with its clock constraints. Consider first
the arithmetic operation Z:= X op Y. The corresponding automaton has two
states: one for firing the reaction and one where the reaction is in a stuttering
state. The equations in Table 1 ensure that the firing state can be entered only
when all clocks are present, and that the stuttering state can be entered only
when all clocks are absent. These constraints express the assumption that,
for arithmetic operations, the only allowable behaviors for the environment
are the monochronous behaviors, with respect to signals X, Y and Z. In the
translation of the delay operation, the automaton also restricts the allowable
behaviors for the environment to monochronous behaviors. For polychronous
operations, the automaton also expresses timing assumptions on the behavior
of the environment, although less strict than the monochronous behaviors.
There are two possible firing states and one stuttering state.

One can note that for the delay operation there is a causality relation
inside the firing state. It is necessary to execute the assignment of the last
value of X to the output Z, before registering the current value of X; else
there would be loss of value to be stored. Since the reaction is instantaneous,
in the figure we show the dependency graphically as a set of internal steps to
be taken inside the firing state. Taking these internal steps does not change
which clock guards are enabled for the next transition.

4 Verification Strategy for Individual Components

In this section, we explain how to verify a single synchronous component in
an asynchronous environment. To this end, we use the Spin model checker to
verify the correctness of the component. We first describe Spin; then we out-
line how to integrate a synchronous component in its environment. We discuss
the issue of interfacing a synchronous component to an asynchronous environ-
ment, and then address the question of whether the model in the asynchronous
environment is equivalent to the original Signal specification.

4.1 The Spin Model Checker

The Spin model checker [8] is used to verify distributed software systems.
Spin models are described using the Promela language. In essence, Spin spec-
ifications consist of a set of sequential processes communicating by means of
channels (or, as special cases, variables). Channels act as finite FIFO buffers.
The body of a process is a sequence of guarded actions. Reading from/writing
to a channel, assigning values to/reading values from a variable are examples
of actions. Guards are predicates on the state space of the process, as well as
synchronization predicates. A process can block when reading from an empty
channel or writing to a channel that is full, but shared variable access does
not block processes.

10

F. Doucet, M. Menarini, I. Krüger, R. Gupta and J.P. Talpin

Delay

Choice

Arithmetic

¬Uτk ∧ ¬Vτk ∧ ¬Zτk

Z:= X$1

¬Xτk ∧ ¬Yτk ∧ ¬Zτk

¬Xτk ∧ ¬Zτk

Xk−1 := Xk

Zk := Xk−1

Zk := Uk

Bτk ∧ Bk ∧ Uτk ∧ Zτk

Z:= X op Y

Xτk ∧ Yτk ∧ Zτk

Zk := op(Xk, Yk)

Z:= U when B

¬Uτk ∧ Vτk ∧ Zτk

Zk := Vk

Zk := Uk

Uτk ∧ Zτk

Z:= U default V

Sampling

Xτk ∧ Zτk

(¬Bτk ∨ ¬Bk) ∧ ¬Zτk

Fig. 3. Translation of Signal statements to transition systems. The automata
transition only on assertion of the clock constraints, which describe the environment
assumptions for correct monochronous or polychronous behavior. To be correct the
delay operation requires a specific statement ordering.

The Spin compiler translates each process to a transition system, and
composes every process into the model to be checked. The processes that
are not blocked can be executed in any arbitrary order. Each statement in a
process can be interleaved with any other statement from any other process.
Inside a process, specific statement sequences can be enforced to be atomic,
meaning that they will not be interleaved with statements of other processes.

To reduce the state space explored by the model checker, Spin offers to
perform a partial order reduction [8] to remove the interleavings that are
observationally the same for an observational property. This means that if
the order of execution of asynchronous processes is not important for a certain
kind of property, the model checker will only consider one of these executions
and prune all the other equivalent executions.

4.2 Translation of Signal Module to Promela Process

In this subsection we describe how we convert a Signal module into a Promela
process.

11

F. Doucet, M. Menarini, I. Krüger, R. Gupta and J.P. Talpin

4.2.1 Generation of Simulation Model of Synchronous Reaction

For a Signal module, the Signal compiler converts all the Signal statements
of the module into transition systems, forms their synchronous product, and
generates a C function that can simulate the synchronous reaction. The C
function reads the input signals, computes the reaction and writes values to
output signals, all in accordance to the synchrony hypothesis, and equivalent
to executing a single step of the synchronous transition system of the Signal
module.

As described in Section 3, Signal modules often define assumptions about
the environment through statements about the clocks of interface signals. In
the C function generated by the Signal compiler, there is some code to check
if the clock assumptions are satisfied. The return value of the C function is a
Boolean value indicating if the reaction has fired successfully or not – meaning
the assumptions were satisfied or not.

4.2.2 Translation Template

To verify a single Signal module, we wrap the C function generated by the
Signal compiler inside a Promela process. The process generates values for the
environment signals and fires the reaction by calling the C function. When
integrating the C function into the Promela process, we know if the assump-
tions are met by firing the C function and checking the return value. If the
clock constraints are not met, it will reset all signals to introduce a stuttering
step. This way, when illegal values are generated on environment signals, the
process executes a stuttering step and one does not observe any change on the
interface signals.

1: proctype some_signal_module() {

2: loop:

3: atomic {

4: /* 1. input generation */

5: /* 2. reaction:

call c code,

introduce stuttering step if required */

6: /* 3. collect output */

7: }

8: goto loop;

9: }

Fig. 4. Translation template to wrap a Signal module inside a Spin process

Figure 4 shows the template we use to wrap the compiler-generated C
function inside a Promela process. A synchronous Signal model is converted
to a Promela proctype. The loop of line 2 coupled with the goto in line 8 is
used to repeat the synchronous reaction forever. The synchronous reaction
is emulated inside to atomic block (lines 3 - 7). The synchrony hypothesis,
in fact, requires inputs and outputs to be observed at the same time. There

12

F. Doucet, M. Menarini, I. Krüger, R. Gupta and J.P. Talpin

is no causal relationship between input and output generation. We use an
atomic step to reproduce this behavior. In fact, we will observe the behavior
of the component using the never claim construct of Promela. This is a Büchi
automaton synchronously composed to the rest of the system; it takes a tran-
sition each time the rest of the system takes one. The use of an atomic step
makes its content to look like a single step. Therefore, the never claim cannot
observe what happens inside it, but just the variable configuration at the end
of the atomic step. Lines 4, 5 and 6 of Figure 4 simulate the synchronous
reaction. Line 4 generates all possible input values. Line 5 calls the C func-
tion generated by the Signal compiler and if it returns true (meaning that the
clock conditions where satisfied) sets the output signals to the correct values;
if it returns false all signals are reset to generate a stuttering step. Finally,
when some observed propery is violated, line 6 prints the signal configuration
to generate an error trace.

4.2.3 Semantics

We now describe the semantics of the Promela process using a transition
system. Spin will add some variables to the transition system to enforce the
semantics of the Promela progam. For instance, each proctype will have a pro-
cess identifier associated with it. Moreover, a global variable called exclusive

will be added to enforce the atomic step semantic.

The proctype delimits the Promela process to be translated into an au-
tomaton M = 〈V, T, s0〉. In the translation, an explicit program counter (pc),
a unique process identifier (pid), and a global variable named “exclusive” are
added to the variable set {pc, pid , exclusive} ∈ V . The “exclusive” variable is
used to guard each transition with the following condition: “exclusive == pid”
or “exclusive == 0”.

The atomic block, starting on line 3 of Figure 4, is translated to a transition
where exclusive is assigned to pid . This way, no other process can be inter-
leaved with the atomic section. This is used to model that the synchronous
reaction is instantaneous.

On line 4, the input generation is implemented using non-deterministic
transitions. This builds a model of the environment, to close the system for
model checking. The model of the environment can generate any possible
input combination for the reaction.

On line 5, the reaction is invoked by calling the C function obtained from
the Signal compiler. If the function returns false, we need to reset the input
and output values to produce a stuttering step. This is because the syn-
chronous process assumptions about the environment were not met by the
input generation step. If the function returns true, it means that the reaction
fired correctly.

On line 6 there is a set of printout statements to print the values of all
signals. These are used to print a counterexample if necessary. They are
ignored in a verification run.

13

F. Doucet, M. Menarini, I. Krüger, R. Gupta and J.P. Talpin

When leaving the atomic section in line 7, the process resets the exclusive

variable to 0, allowing any other process execution to be interleaved.

In this template, one can observe the reaction only after the atomic sec-
tion. This means that an observer will see the input values at the same time
as the output values, and will not be able to infer causality relations without
additional information. If the environment generates valid inputs, then the
observer will observe the inputs and the outputs at the same time. This tem-
plate can be used to model-check the Signal module for LTL properties. This
is the implementation of the synchrony hypothesis in our Promela translation.

4.3 Equivalence of the Descriptions

In this subsection, we prove the equivalence of the Signal module with the
Promela process by using observational equivalence [9]. We show that the
first is trace equivalent to the second, and since we consider deterministic
systems, the equivalence is compositional for LTL properties.

Definition 7 (Trace Equivalence) Let M1 and M2 be two transition sys-

tems with the same alphabet. M1 and M2 are trace equivalent, denoted M1 ≈
M2, if they have the same language: L(M1) = L(M2).

In our case, trace equivalence means that one can observe the same events
on the Promela process and the Signal module. Since the model of the Signal
module is contained within and invoked from inside the Promela process, the
proof is by construction.

We define observers on the Promela process and on the Signal process as
processes that are synchronously composed with their respective models. Let
us denote V if

s to be the set of input and output signals for the interface of the
Signal process. We define a Signal observer as a transition system Os over V if

s

that can observe any possible run over V if
s . The observer Os is synchronously

composed with the transition system of the Signal module and observes after
each synchronous reaction, sampling both inputs and outputs.

We define V if
p as the set of variable pairs (value/clocks) in the Promela

process that correspond to V if
s in the Signal module. These are the observable

input and output of the Promela process, corresponding to the interface of the
Signal module.

We define an observer Op on the Promela process as a transition system
over V if

p that can observe any possible run over V if
p . The observer Op is

composed synchronously with the Promela process, observing only after the
synchronous reaction. Indeed, the observer cannot observe inside the atomic
section since it is guarded by the expression: exclusive== 0 or exclusive==
observer pid, and variable “exclusive” is not in the alphabet of the observer.
We can now state the following theorem.

Theorem 4.1 Let Ms = 〈Ss, Ts, ss0
〉 and Mp = 〈Sp, Tp, sp0

〉 be transition

systems for a Signal module and its Promela translation respectively . Let Os

14

F. Doucet, M. Menarini, I. Krüger, R. Gupta and J.P. Talpin

be an observer over V if
s on Ms, Op be an observer over V if

p on the Mp, and

let Ls and Lp be the languages they observe, respectively. Then the following

holds: Ls = Lp and by Definition 7, Ms ≈ Mp with respect to Os and Op.

Proof sketch: This is a proof by construction. The two observers observe
observables with the same alphabet. In fact, we can define a bijective function
that maps from signals in V if

s to pairs value/clock in V if
p . Therefore, we can

map the observations of the two observers to the same alphabet. By definition,
observer Os can observe any legal behavior of the Signal module. Observer
Op can observe the configuration of the pairs in V if

p only when the “proctype”
execution reaches line 8 of Figure 4. This is because the “exclusive” variable
guards each step of Op so that the guard is false when the “proctype” is
executing inside the atomic block (“exclusive” variable is set to the process
identifier of the “proctype” containing the atomic instruction and reset to 0
when the block ends)

In line 4 of Figure 4, any possible configuration of input signals of V if
p

can be generated. After line 5 is executed, the configuration of V if
p is either

a valid signal configuration for the Signal module or a stuttering step. Line
5 calls the C function generated by the Signal compiler. This function is
deterministic and, if provided the right input, returns true and simulates the
correct reaction for the Signal program. If the input configuration is not
correct (does not satisfy the clock tree) it returns false. In the latter case all
signal clocks are set to 0, generating a stuttering step.

The execution of line 6 does not modify V if
p . By construction, line 6 just

prints the current state of input and output variables to provide an error trace.
(This happens only when replaying an error trace in Spin; during a verification
run all print instructions in this line do not execute at all).

We prove that observer Op can observe any word observed by Os. All
inputs are generated in line 4. After line 5, if the input signals generated were
consistent with the clock tree the configuration of V if

p is the same as V if
s and

because line 6 does not modify it, this is still true in line 8 when Op carries
out its observation. Given that at any time all possible correct inputs can be
generated, then s ∈ L(Ms) =⇒ s ∈ L(Mp).

We now prove that observer Os observes all words observed by Op: s ∈
L(Mp) =⇒ s ∈ L(Ms). After line 5 we have the same configuration of
V if

p and V if
s or a stuttering step for V if

p . In subsection 3.4, we extended the
synchronous transition system to allow for stuttering steps. In a stuttering run
we can add of remove an unbounded number of stuttering steps. Therefore, all
words observed by Op can be observed by Os. This proves that s ∈ L(Mp) ↔
s ∈ L(Ms) and therefore the equivalence of the two languages.

Now, given the synchronous composition, the observers observe the same
behaviors by construction. The difference between the Signal module and
the Promela process is the stuttering step, but because stuttering steps do
not change the semantics of the transition system, we can state that the

15

F. Doucet, M. Menarini, I. Krüger, R. Gupta and J.P. Talpin

two languages observed are the same. Given that the two modules are trace
equivalent, LTL properties verified on the Promela model hold for the Signal
model. In Promela, an observer can be implemented using a never claim.
Spin converts an LTL property to a never claim [8], which observes the same
language as the observer we used in the theorem.

5 Verification Strategy for GALS Architecture

We now extend our focus from synchronous modules to their asynchronous
composition into a Globally Asynchronous, Locally Synchronous (GALS) ar-
chitecture. We will use asynchronous model checking to enumerate all exe-
cution interleavings of the synchronous blocks in the GALS system to avoid
unexpected problems of incorrect behaviors or deadlocks. The Spin model
checker can find out if these kinds of problems arise, and can return the exe-
cution path that leads to the error, if one exists.

The use of a Loosely Time-Triggered Bus Architecture (LTTA) is one way
to implement globally asynchronous communications around synchronous is-
lands of computation [3]. We abstract the LTTA bus to a Promela channel
of size 1, and prove their equivalence through model checking. This abstrac-
tion will allow us to verify more complex systems than possible using the
standard translation of the LTTA. We then show that the GALS architecture
model, where we replace LTTA bus structure with Promela FIFO channels, is
equivalent to a real hardware implementation.

5.1 Communication Channel Abstraction

The basic structure of the LTTA is illustrated in Figure 5. It is composed of
three devices, a writer, a bus, and a reader, indicated by the superscripts ()w,
()b and ()r respectively. Each device is activated by its own, approximately
periodic, clock. At the nth clock tick (time tw(n)), the writer generates the
value xw(n) and an alternating flag bw(n) such that:

bw(n) =

false if n = 0

not bw(n − 1) otherwise

Both values are stored in its output buffer, denoted by yw. At any time t, the
writer’s output buffer yw contains the last value that was written into it. At
tb(n), the bus fetches yw to store in the input buffer of the reader, denoted
by yb. At tr(n), the reader loads the input buffer yb into the variables x(n)
and b(n). Then, in a similar manner as for an alternating bit protocol, the
reader extracts x(n) if and only if b(n) has changed, meaning that the value
also changed. In order to prove the correctness of the protocol, we need to
prove that, under some hypotheses on the clocks, the sequences xw and xr

must coincide, i.e., ∀n · xr(n) = xw(n).

16

F. Doucet, M. Menarini, I. Krüger, R. Gupta and J.P. Talpin

bus

writer reader

sustain yb tb

tw

xw

tr

xr = x

yr = (x, b)
yw = (xw, bw)

Fig. 5. Basic structure of the LTTA

In [3], it is shown using symbolic model checking that a discrete Signal
model of the LTTA protocol satisfies the desirable requirement of ensuring a
coherent distribution of clocks. However, the assumptions ensuring correctness
of the actual LTTA protocol are quantitative in nature (tolerance bounds for
the relative periods, and time variations, of the different clocks). For the
protocol to be correct, the clocks must be quasi-periodic (periods can vary
within certain specified bounds), and must relate to each other within some
specified bounds.

In order to allow for standard model checking techniques to be used, two
kinds of abstractions of the protocol are necessary. The first one is to use
only boolean data types for bus payload. It is clear that this protocol and
the property to be verified are data-independent with respect to the type X

of data which is transmitted. Therefore, it is sufficient to verify this protocol
with a finite set of finite instantiations of the type X. It is then possible
to deduce the correctness of the protocol for any instantiation of the type
X. However, in [3], only the instantiation of X by the type of booleans is
considered.

The second abstraction is about the relative rates of the clocks. The con-
dition that the bus must be faster than the writer is an abstraction on the
ordering between events. This is abstracted by a predicate that never two
writes occur between two bus transfers. Similarly, there must not be two
bus transfers between two reads. These assumptions are encoded as fairness
conditions in the environment model, i. e. the clocks of the reader and writers.

same?

bus

r

FIFO (size 1)

w

Fig. 6. Verification setup for equivalence of LTTA with FIFO buffer of size 1

Figure 6 shows the model checking setup for verifying that the LTTA bus
is equivalent to a FIFO buffer of size one. We created a reader and a writer
process and connected them to the translation of the Signal LTTA bus model.
The writer process generates data values, writes them both to the bus and
to the FIFO, and the reader process compares the values for correctness. We
placed an assertion in the reader process that the values read are always equal.

17

F. Doucet, M. Menarini, I. Krüger, R. Gupta and J.P. Talpin

Theorem 5.1 Let ML be an LTTA bus and MC be a Promela channel with

capacity of size 1. Assuming that the constraints about the clock rates for the

reader and writer processes hold, then ML is trace equivalent to Mc.

Proof sketch: By model checking. The LTTA bus is checked, as a black box,
to have the same behaviors as the FIFO buffer, in all possible environments
that can be generated by the reader and writer processes. That is, the writer
generates every possible value on the interface signals and we show that the
values read are the same.

The clock assumptions with the handshaking inside the LTTA bus can be
modeled by the blocking behaviors of the FIFO channels.

5.2 Communication Abstraction and Scalability Benefit

In this subsection, we comment on benefits that the abstraction of the LTTA
bus to a channel provides on the scalability of the verification.

To investigate this, we created three additional trace equivalence experi-
ments, shown in Figure 7(a), (b) and (c) where we pipeline the busses. We
verify the system at the end of the pipeline to prove that it still behaves cor-
rectly with respect to the correctness condition of trace equivalence with a
pipeline of FIFOs. The performance numbers of the model checker for the
three experiments are listed in Table 2.

The first entry in the table shows the results for verifying the equivalence
of a single bus with a single FIFO buffer, the experiment described in the
previous subsection. The second entry lists the results for the two-stage setup
of Figure 7(a). A reader/writer process is connected between the busses to
read the output from one bus and write it to the next one. For this setup,
one can easily notice major increases in state space and memory usage. For
the pipeline with three stages, shown in Figure 7(b), we again connect the
busses with intermediate processes to forward the data. In this case, we were
not able to check the full model state space because the amount of memory
required was too high. We used state-space compression in Spin and were
able to check the program but without an exhaustive coverage of all possible
states. Still, with this technique, the results show major increases – especially
for memory usage, which is above 1.5 GB.

To be able to exhaustively model-check a three bus system, we simplified
the program using a technique suggested in the Spin book [8]. We directly
connected the output of one bus to the input of the following one, removing
the additional processes. With this configuration we obtained a system made
up of 3 processes described in signal (LTTA bus) and 2 processes written in
Promela (reader and writer). The resulting system was simple enough to be
exhaustively verified, and the statistics are listed in the table as the simplified
model. The required memory is slightly above 1GB.

Finally, as shown in Figure 7(c), we replaced all LTTA modules with
Promela channels and checked for trace equivalence. Using the channel ab-

18

F. Doucet, M. Menarini, I. Krüger, R. Gupta and J.P. Talpin

straction, the experiment ran in less than half a second with a state vector of
64 bytes, requiring about 2MB of memory.

These results show a tremendous benefit in using the abstraction of LTTA
bus modules to Promela channels (as shown from the data of Table 2). We ran
our experiments using Spin Version 4.1.3 (April 24 2004), on a dual processor
machine with two 3.2 GHz Xeon processors and 6 GB of RAM, running Linux
Fedora Core 2.

(a)

w

bus

r/w

bus

r

Channel Channel

Channel

w

bus

Channel

r/w

bus

Channel

r/w

bus

r
same?

Channel

w

Channel

r/w

Channel

r/w

Channel ChannelChannel

r
same?

(c)

same?

(b)

Fig. 7. Scalability experiments for the LTTA example: (a) 2 stage pipeline using
LTTA translation (b) 3 stage pipeline using LTTA translation (c) 3 stage pipeline
using only Promela channels.

Table 2
Performance number for the model checking of the LTTA

of buses State Depth States Transitions Atomic Memory Time

-vector reached stored steps used Used

1 168 bytes 3294 1097 3190 14230 1.78 MB 0.01 s

2 324 bytes 628960 235681 1.11e+06 5.27e+06 145 MB 6.30 s

3 (compression) 480 bytes 14,165,911 3.04e+06 2.19e+07 1.05e+08 1,649 MB 189 s

3 (simplified) 296 bytes 4,219,560 1.56e+06 9.59e+06 4.55e+07 1,073 MB 56 s

3 (channels) 64 bytes 1331 4661 20226 14119 1.78MB 0.04 s

5.3 Verification Model for GALS Architecture

In this section, we prove that our Promela model is equivalent to a hardware
implementation using synchronous modules connected by LTTA busses. In

19

F. Doucet, M. Menarini, I. Krüger, R. Gupta and J.P. Talpin

this architecture, each synchronous block is wrapped into logic that gates the
input clock to have control on when to fire the reaction. This happens when
all inputs are present. Thus, this logic implements the firing condition – the
clock relation guard – for the synchronous module.

gating

Promela proctype(chan c1, c2)
loop:

 atomic {

 1) check input guards

 2) fire reaction

 3) check if reaction sucessful

 3a) assign output if true

 }

goto loop;

Promela proctype(chan c1, c2)
loop:

 atomic {

 1) check input guards

 2) fire reaction

 3) check if reaction sucessful

 3a) assign output if true

 }

goto loop;

gating
clock

clock
relations

guard

LTTA

LTTA
relations

guard

clock

Promela
channel c2

Promela
channel c1

Synchronous
Hardware

Synchronous

Hardware

clock

≈

Fig. 8. Hardware implementation of the GALS model.

Figure 8 shows the equivalence relation we want to prove, where the upper
part is the structure of our Promela model and the lower part of the figure
represents the hardware structure.

To integrate Promela models of Signal components into this kind of GALS
deployment, we need to slightly modify the translation template defined in
Figure 4. Since the input is now generated by other components in the GALS
architecture, the original input generation step is replaced by a step where
we convert the FIFO channels into signals with variables for their value and
clocks. The process is then fired by calling the Signal-compiler-generated C
function, and if the return value is true, the input channels will be emptied; the
output values will be read from the signals and written to the channel. If the
call return false, then inside the Promela process the reaction will be converted
to a stuttering step, and the input channels will not be emptied. Thus, we
use the return value of the Boolean function to evaluate if the clock relations
are satisfied, at which condition the input channels can be emptied and values
can be written to the output channels. Now, based on these conditions, we
can state that using the return value of the C function properly simulates the
input guard – the clock constraints – and correspond to the implementation.

Theorem 5.2 Let Ss = 〈Ms, Cs, Gs〉 be a system model where Ms = {ms0
,

..., msn
} is a set of synchronous modules modeled inside our Promela wrap-

20

F. Doucet, M. Menarini, I. Krüger, R. Gupta and J.P. Talpin

per, Cs = {cs0
, ..., csm

} is a set of Promela channels linking the synchronous

modules and Gs = {gs0
, ..., gsn

} is a set of guards on the set of Promela chan-

nels Cs. Let Si = 〈Mi, Ci, Gi〉 be an implementation of the system, where

Mi = {mi0 , ..., min} is a set of synchronous modules, and Ci = {ci0 , ..., cim}
is a set of channels equivalents to Promela channels, like the LTTA is, and

Gi = {gi0, ..., gin} is a set of guards on the set of implementation channels Ci.

If ∀x ∈ 0..n|L(gix) = L(gsx
) then Ss ≈ Si for observers on the communication

channels.

Proof sketch: We assume that all hardware modules are correct with re-
spect to the corresponding Signal specifications. By Theorem 5.1, we know
that the LTTA bus is equivalent to a Promela channel, with their languages
being the same. By Theorem 4.1, we know that the Promela translation of
the synchronous component is equivalent to the component. By construc-
tion, the guards in the hardware model implement the same Boolean function
of the guards in the Promela model. Then, by composition of languages, the
Promela model is trace equivalent to the implementation. Or, given the equiv-
alence of ∀x ∈ [0..n] (L(msx

)|| L(gsx
)|| L(cso

)||...||L(csm
) ≈ L(mix)|| L(gix)||

L(ciy)||...||L(cim), then, by implication Ss ≈ Si.

Since the systems are trace equivalent, if an LTL property φ holds on the
Promela specification it also holds on the hardware implementation: Sp |=
φ ↔ Si |= φ.

By using our integration approach, in the Promela model, a designer does
not have to manually code the guards verifying the clock relations. The usage
of the stuttering step inside the translation template models the possible inter-
leavings for asynchronous arrivals of data from different sources, and enables
practical system verification. However, in the hardware implementation, the
guards will have to be manually implemented if the hardware components do
not generate stuttering steps when fired with inputs that do not respect the
clock constraints.

6 Verification Example

In this section, we use an automobile Central Locking System (CLS), illus-
trated in Figure 9, as a GALS system example. It has several components,
each described by an independently clocked Signal process, connected to each
other using LTTA channels; by means of the techniques introduced in the
preceding sections we can model the LTTA channels by means of Promela
channels for the verification task. The system specification includes a “Key”
control, that can issue three commands: lock, unlock and open trunk.

A second component of the CLS is the “CLSController”. It is a control
unit that is connected to all the other components and issues the appropriate
commands to them. Another component of our system is the “ImpactSensor”.
This device is connected to the “CLSController”; in the case an accident is

21

F. Doucet, M. Menarini, I. Krüger, R. Gupta and J.P. Talpin

detected, the “CLSController” must unlock all the doors overriding any other
command from the “Key”. The last two components present in our model are
the “DoorMotor” subsystems. They execute the physical opening and closing
of the two doors, inform the “CLSController” when the operation is completed
and report the current status.

CLS Controller

Key

Impact Sensor

Right Door MotorLeft Door Motor
LTTALTTA

LTTA

LTTA

Fig. 9. Block diagram of Central Locking System example

Table 3
Performance number for the model checking of the CLS

Simulation State Depth States Transitions Atomic Memory Time

description -vector reached stored steps used used

Full model 1 616 19897839 6.218e+06 4.506e+07 3.177e+08 Out of 2 hours+

bytes memory

Full model 2 520 21618700 7.614e+07 6.904e+08 4.735e+09 1970 MB 5:24:11

bytes

Without 496 6109897 2.593e+07 2.942e+08 2.360e+09 3435 MB 2:26:13

ImpactSensor 1 bytes

Without 496 6109897 2.306+07 2.636e+08 2.125e+09 Out of 2 hours+

ImpactSensor 2 bytes memory

We present the results for the verification of a very important property:
under any circumstances, if an accident occurs, the doors of the car are au-
tomatically unlocked. We ran the model checking with different options to
verify the property �(impact happens → ♦�(doors unlocked)).

Table 3 shows the interesting performance numbers for these checks. We
discuss each of the verification runs captured in the rows of Table 3, in turn.
The first run is the verification of the full model with the partial order reduc-
tion and all the possible compressions activated, where we ran out of memory
after more than 2 hours. The SPIN model checker cannot use more that 4GB
of RAM.

The second verification run for the full model uses the BITSTATE hashing
algorithm of Spin. This algorithm does not store the full description of the
states it explores, but uses a hash function on the state description instead
to identify already explored states. In the event of a hash clash, two different
states are identified as equal, and some execution path is not explored. We

22

F. Doucet, M. Menarini, I. Krüger, R. Gupta and J.P. Talpin

report the succesful verification of the property using this method for the
system with five processes.

To be able to completely model-check our system, we introduced an ab-
straction. We noticed that the “ImpactSensor” process was a source process
[8] responsible only for random generation of impacts. We changed the model
a little bit by removing the “InpactSensor” and instead sending impact signal
directly to the “CLSController”.

This reduction in the number of processes reduces the number of possible
interleavings, and using the partial order reduction and, the system model has
become small enough to perform an exhaustive verification on it. The third
entry in the table shows the results after this change. While it still requires
large amounts of memory, this instance of the system can be fully verified for
the accident property. One can note that the partial order reduction is critical
in verifying this instance, and without it we cannot verify the system. The
fourth entry shows how one runs out of memory when trying to verify the
system without using the reduction.

One could wonder why this design example, which is of reasonable size,
requires so much memory. We are investigating ways to reduce the memory
required to verify GALS architectures using our translation. One problem
arises from the use of 32 bit integers variables for boolean values in the C
code generated by the Signal compiler. The use of a single bit for booleans
could potentially greatly reduce the size of the state vector. There is room for
optimization of the translation to make sure that the variables used in the C
translation only range over the necessary minimal domain.

7 Conclusion and Future Work

We presented an approach for model checking integration of synchronous Sig-
nal components into a GALS system architecture. The integration of the Sig-
nal synchronous modules into the Spin model checker requires to convert the
Signal specification to a transition system that we then translate to Promela.
By using the C output of the Signal compiler and in-lining it into the Promela
specification, it is possible to create a verification model in very little time.
We proved the equivalence of this translation to the original Signal module.
We then abstracted GALS communication by showing that the LTTA bus
is equivalent to a FIFO buffer. Then we performed the verification of an
asynchronous integration of synchronous modules into an automotive central
locking system, and described our performance experiments.

The results obtained so far are promising towards accelerated verification
of GALS architectures. Promising areas of applications and avenues of ex-
tension comprise the use of this framework for conformance checking GALS
designs at different design abstraction layers, as conducted in [14]. While the
core of this work is about integrating synchronous components, one could also
extend this as the refinement of a synchronous component into a set of asyn-

23

F. Doucet, M. Menarini, I. Krüger, R. Gupta and J.P. Talpin

chronous modules. One may desire to insert desynchronization buffers into
such a refinement and model check the correctness of the refinement using
flow preservation refinement and real-time constraints. Future investigation
efforts will be on closing that gap. Although the work presented in this paper
does not imply a method to proof refinement it can be used to verify the de-
ployment of the specification on an asynchronous architecture. Another very
interesting element of future work following this path would be to study dif-
ferent types of interconnections between the synchronous components. This
would allow for verification of more complex GALS systems going beyond
point-to-point connections. Also, since our proof is largely independent of
the input language, we could apply it for the conversion of components spec-
ified in other languages, as long as they correctly implement the synchrony
hypothesis, and generate a C model where we can invoke the reaction.

Acknowledgments

Our work was partially supported by the UC Discovery Grant and the Industry-
University Cooperative Research Program, by the Semiconductor Research
Corporation, as well as by funds from the California Institute for Telecom-
munications and Information Technology. We are grateful to the anonymous
reviewers for their insightful comments.

References

[1] T. P. Amagbegnon, L. Besnard, and P. Le Guernic. Implementation of the data-
flow synchronous language signal. In Conference on Programming Language
Design and Implementation. ACM Press, 1995.

[2] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. L. Guernic, and
R. de Simone. The synchronous languages 12 years later. Proceedings of the
IEEE, 91(1):64–83, January 2003.

[3] A. Benveniste, P. Caspi, P. L. Guernic, H. Marchand, J.-P. Talpin, and
S. Tripakis. A protocol for loosely time-triggered architectures. In J. Sifakis
and A. Sangiovanni-Vincentelli, editors, Proc. of 2002 Conference on Embedded
Software, EMSOFT’02, volume 2491 of LNCS, pages 252–265. Springer Verlag,
2002.

[4] A. Benveniste, P. Le Guernic, and C. Jacquemot. Synchronous programming
with events and relations: the signal language and its semantics. Science of
Computer Programming, 16(2):103–149, 1991.

[5] G. Berry. The Foundations of Esterel. MIT Press, 2000.

[6] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli. Theory of
latency-insensitive design. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 20(9):1059–1076, September 2001.

24

F. Doucet, M. Menarini, I. Krüger, R. Gupta and J.P. Talpin

[7] D. Chapiro. Globally-Asynchronous Locally-Synchronous Systems. PhD thesis,
Stanford University, 1984.

[8] G. J. Holzmann. The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley, 2004.

[9] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[10] S. Ramesh, S. Sonalkar, V. D’Silva, N. Chandra, and B. Vijayalakshmi. A
toolset for modelling and verification of gals systems. In R. Alur and D. Peled,
editors, CAV, volume 3114 of Lecture Notes in Computer Science, pages 506–
509. Springer, 2004.

[11] M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. Rabaey, and
A. Sangiovanni-Vincentelli. Addressing the system-on-a-chip interconnect woes
through communication-based design. In Proc. IEEE/ACM Design Automation
Conf., June 2001.

[12] M. Singh and M. Theobald. Generalized latency-insensitive systems for gals
architectures. In FMGALS, 2003.

[13] M. Singh and M. Theobald. Generalized latency-insensitive systems for single-
clock and multi-clock architectures. In 2004 Design, Automation and Test in
Europe Conference and Exposition (DATE 2004), 16-20 February 2004, Paris,
France. IEEE Computer Society, 2004.

[14] J.-P. Talpin, P. Le Guernic, S. K. Shukla, R. Gupta, and F. Doucet. Polychrony
for formal refinement-checking in a system-level design methodology. In Special
Issue of Fundamenta Informaticae on Applications of Concurrency to System
Design. IOS Press, Aug. 2004.

25

	Introduction
	Related Work
	The Synchronous Model of Computation
	Tagged Model
	Transition System
	Signal Semantics
	Translation to Transition System

	Verification Strategy for Individual Components
	The Spin Model Checker
	Translation of Signal Module to Promela Process
	Equivalence of the Descriptions

	Verification Strategy for GALS Architecture
	Communication Channel Abstraction
	Communication Abstraction and Scalability Benefit
	Verification Model for GALS Architecture

	Verification Example
	Conclusion and Future Work
	References

