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Abstract

The quality of synthesis results for most high level synthesis approaches is strongly a�ected by
the choice of control ow (through conditions and loops) in the input description. In this paper,
we explore the e�ectiveness of various types of code motions, such as moving operations across
conditionals, out of conditionals (speculation) and into conditionals (reverse speculation), and
how they can be e�ectively directed by heuristics so as to lead to improved synthesis results in
terms of fewer execution cycles and fewer number of states in the �nite state machine controller.
We also study the e�ects of the code motions on the area and latency of the �nal synthesized
netlist. Based on speculative code motions, we present a novel way to perform early condition
execution that leads to signi�cant improvements in highly control-intensive designs. Overall,
reductions of up to 38 % in execution cycles are obtained with all the code motions enabled.

1 Introduction

High-level synthesis of digital systems from a behavioral description has received signi�cant atten-
tion in the last 15 years [1, 2]. However, commercial synthesis tools have gained limited acceptance
among designers, primarily due to poor synthesis results in the presence of conditionals and espe-
cially loops, and lack of controllability of quality of results.

The quality of results for control intensive designs is signi�cantly a�ected by the control ow
in typical applications. The control ow in a design is also a�ected by the programming style.
Some work has focussed on reducing the sensitivity of synthesis to programming style [3, 4]. For
e�ectiveness, a high-level synthesis (HLS) system has to make the right tradeo�s among available
time, performance, and area costs. Furthermore, the presence of complex control ow signi�cantly
e�ects the quality of synthesis results. In this paper, we propose techniques to move operations
across control structures (conditionals and loops) that enable HLS algorithms to make these trade-
o�s e�ectively. Scheduling algorithms can use these beyond-basic-block code motion techniques
like speculative execution to extract the inherent parallelism in the design and increase resource
utilization.

Speculation is not a new concept; indeed, code motions and speculation are supported either
partially or fully in several previously presented synthesis systems [5, 6, 7, 8]. CVLS [5] uses
condition vectors to improve resource sharing among mutually exclusive operations. Radivojevic et
al [6] present a symbolic formulation which generates an ensemble schedule of valid and scheduled
traces. TheWavescheduling approach [8] incorporates speculative execution into high level synthesis
to achieve its objective of minimizing the expected number of cycles. Santos et al [7] support
generalized code motions in a synthesis system where operations can be moved and scheduled
irrespective of their position in the input description. However, several of these approaches either
do not handle loops or place restrictions on the nesting of loops within conditionals or vice versa.
Furthermore, these approaches do not maintain information about hierarchical structuring of the
code, which leads to expensive and ine�cient code motion techniques (see Section 2).

Most previous works present and compare results in terms of the schedule lengths. This has
prevented a clear analysis of the e�ects of scheduling and code motions on the area and latency of
the hardware generated. Because of this, the control logic overheads are usually ignored despite
the fact that industry experience has often shown that critical paths in a high performance design
lie in the control unit.

We are developing a modular and extensible high-level synthesis research system called Spark.
We have used parallelizing compiler technology developed previously in our group [9, 10] and
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instrumented and modi�ed it for high-level synthesis. Since one of the outputs of the system is
synthesizable register-transfer level(RTL) VHDL, the system enables evaluation of the e�ects of
several coarse and �ne-grain optimizations on logic synthesis results. The input language for Spark
is ANSI-C, currently with the restrictions of no pointers and no function recursion. Spark provides
an integrated ow from architectural design to logic synthesis.

This paper presents some basic code motion transformations and a simple heuristic that ju-
diciously chooses which code motion should be applied, while making performance, resource and
area cost trade-o�s. These judicious choices of the various code motions to control the quality of
synthesis results is the chief contribution of this paper. The results section shows the e�ects of the
code motions on the quality of synthesis results and demonstrates which code motions are most
e�ective for synthesis.

2 A Model for Control Intensive Designs

The Spark system stores the behavioral description in

Init Statement

Cond Statement

Statement

Statement

Statement

Basic Block

Incr Statement

For HTG Node
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Simple HTG Node

Figure 1: The Hierarchical Task Graph
Intermediate Representation of a For
Loop

an intermediate representation (IR) which retains all the
information given in the input description. This is crit-
ical for enabling coarse-level transformations and mak-
ing global decisions about code motion. The IR consists
of basic blocks encapsulated in Hierarchical Task Graphs

(HTGs) [11, 9]. In addition to operation level and basic
block level information, HTGs also maintain coarse, high
level information about compound nodes. That is, the
basic blocks comprising an if-then-else conditional block
or a for loop are aggregated into a compound HTG node.

Figure 1 illustrates the representation of a For loop

HTG. The member basic blocks of this HTG are the ini-
tialization basic block, the conditional check block, the
body of the loop and the loop index increment. Simi-
larly, in Figure 2 the benchmark waka introduced by Wak-
abayashi et al [5] is shown as represented by HTGs. In
this �gure, the dashed arrows indicate control ow and
the solid lines indicate data ow. Operations are denoted
by circular nodes with the operator sign within and the
triangle indicates a conditional check. The number next
to each operation node indicates the priority of the oper-
ation (see Section 4).

The structural nature of the HTGs retains information about the mutual exclusiveness of op-
erations, and can be used for making global decisions about code motion and speculation. HTGs
are key to fast and e�cient code motion techniques such as Trailblazing [9] and Resource-Directed

Loop Pipelining [10], both of which are implemented in Spark.

3 Speculation in High Level Synthesis

In the presence of control structures, maximal parallelism can be extracted with the use of code
motion, i.e., code restructuring by the movement of operations within and beyond basic blocks,
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Figure 2: Hierarchical Task Graph representation of the Benchmark \waka" [5]. The numbers
indicate the priorities of the operations

and across and out of control structures such as conditionals and loops. Code motion exposes
concurrency, hence, increasing opportunities for resource utilization without an increase in latency.
Also, code motions restructure the control ow in the design and lead to reduced control costs.
These reduced control costs can be quanti�ed in terms of the number of states in the �nite state
machine controller.

One of the key enabling transformations for e�cient code motion is speculation. Speculative

execution refers to the unconditional execution of instructions that were originally supposed to have
executed conditionally. In the compiler context, if the condition evaluates to false, compensation
code has to be executed. However, in the hardware synthesis context, we can simply choose to
either commit the results or discard them based on the evaluation of the conditions.

The example in Figure 3 demonstrates speculation. In Figure 3(a), variables d and g are
calculated based on the result of the calculation of the conditional c. Since d and g are executed on
di�erent branches of a conditional, these two operations are mutually exclusive. They can, hence,
be scheduled on the same hardware resource as shown in the corresponding circuit in Figure 3(a).

Now, consider that enough resources (an additional adder) are available; then the operations
within the conditionals can be calculated speculatively and concurrently with the calculation of the
conditional c as shown in Figure 3(b). Based on the evaluation of the conditional, one of the results
will be discarded and the other commited. It is evident from the corresponding hardware circuits
that the longest path gets shortened from being a sequential chain of a comparison followed by
an addition to being a parallel computation of the comparison and the additions followed by a
multiplexing of the results.

However, this example also demonstrates the additional costs of speculaton. Speculation leads
to requires more resources and more storage for the intermediate results. So, uncontrolled aggressive
speculation can lead to worse results due to extra resources required. On the other hand, resources
that are idle can be used to execute operations speculatively. Hence, speculation along with other
code motions needs to be directed by a global scheduling heuristic.
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4 Priority-based Global List Scheduling Heuristic

Scheduling is the task of assignment of operations to control steps or time intervals so that the
allocated resources can compute the operations assigned to each step [1, 2, 12].

For the purpose of evaluating the various code motion transformations, we have chosen a
Priority-based global list scheduling algorithm, although the transformations presented here can
be applied to other scheduling heuristics as well. Since our objective is to minimize the longest

delay through the design, we assign a priority to each operation which is one more than the max-
imum of the priorities of all the operations that use its result. Hence, operations that produce
outputs have priority zero, and those which depend on them have priority one and so on, as shown
in Figure 2 for the waka benchmark [5]. The priority assignment can also be changed to minimize
a di�erent cost function, such as average delay.

The Priority algorithm determines the operation with the highest priority which is ready to be
scheduled (data dependencies are satis�ed) and then employs techniques such as speculation and
dynamic renaming [13] to move the operation so as to schedule it on the available resource. To
further aid in improving the resource utilization, we have implemented two more code motion tech-
niques, namely, reverse speculation and early condition execution. These techniques are discussed
in the next two sections.

4.1 Reverse Speculation

Synthesis results can vary widely due to syntactic variance of the input description. The Priority
scheduling algorithm can determine if it is more \pro�table" to speculatively execute operations
which are within conditionals. Conversely, a situation may arise that an operation outside a condi-
tional has lower priority than another operation inside the conditional. The operation outside the
conditional can then be reverse speculated into the conditional, so that the resources freed by this
reverse speculation can be better utilized by higher priority operations.

This is demonstrated in Figure 4. The operations g and e lie on the longest path of the design
and the operation c does not. Hence, g and e have higher priority than operation c. Operation c

is reverse speculated into the conditional as shown in Figure 4(b). Also, the reverse speculation
algorithm detects that operation c is required only in one of the branches of the conditionals and
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Figure 4: Reverse Speculation for the waka benchmark (a) original design (b) after reverse specu-
lation

hence, moves it only into that conditional. This is determined by checking which basic block(s)
have operations that use the result of the operation c and moving c only to those basic block(s).

4.2 Code Restructuring by Early Condition Execution

Reverse speculation can be coupled with another novel transformation that we introduce, namely,
early condition execution. This transformation involves restructuring the original code, so as to
execute conditional checks as soon as possible. This in e�ect means that the conditional check is
\moved up" in the design, and hence, all operations before the conditional are reverse speculated
into the conditional. The motivation for this technique comes from the fact that a conditional has
high priority since all the operations in its conditional branches depend on it.

Early condition execution is demonstrated for the waka benchmark in Figure 5. In this �gure,
the operations p and q which calculate the conditions are executed as soon as possible and hence
the conditionals based on them can be checked early. Unscheduled operations from basic blocks
preceding the conditional (d, k and c) are reverse speculated into the conditional branches as shown
in Figure 5(b). Note that operations d and c are reverse speculated into only those branches which
use their results.

This also leads to more e�cient resource sharing since the operations on either side of the
conditional are mutually exclusive. By this technique and the use of HTGs, we are able to implicitly
extract and use information about mutual exclusivity of operations without using computationally
expensive Binary decision diagram (BDD) packages [6, 7].

These transformations are implemented in the Spark system and the Priority list scheduling
algorithm determines when to apply the transformations based on the priorities of the operations.
Hence, at each cycle, the highest priority \available" operation is scheduled on the resource by
employing the necessary code motions. Operations left unscheduled at the end of a basic block are
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Figure 5: Code Restructuring by Early Condition Execution (a) original design (b) design after
early condition execution

moved down into the next basic block or reverse speculated into the conditional branches, as the
case may be.

5 Experiments and Results

This section studies the e�ects of the various code motions directed by the Priority list scheduling
algorithm on the synthesis results. The results are presented in terms of the number of states in
the �nite state machine in the controller of the generated RTL VHDL and the cycles on the longest
path in the design. For loops, the longest path length of the loop body is multiplied by the number
of loop iterations. Longest path length is equivalent to the execution cycles of the design. The
results of logic synthesis are also presented to evaluate the e�ects of the transformations on area
and latency of the synthesized design. Spark is being developed in C++ on both the Sun Solaris
and Microsoft Windows platforms. It uses Graphviz [14] as its graphical user interface and for
graph layout and visualization.

Tables 1 and 2 demonstrate the e�ectiveness of the various types of code motion described in
this paper. The benchmarks used are the Encoder from the ADPCM benchmark and the Prediction
block from the MPEG-1 algorithm (available for download from Spark's web page). The ADPCM
benchmark has 37 Basic Blocks and MPEG Prediction has four functions, calc forward motion,
calc backward motion, calcid and pred with 36, 36, 1 and 80 basic blocks respectively (only non-
empty basic blocks are counted). The pred function has a 3-case switch statement which we
partitioned into two functions pred0 1 and pred2 since logic synthesis tools cannot handle the
complete function. Since the �rst two functions are extremely similar and the calcid function
has only 1 basic block, we only present results for the functions calc forward motion, pred0 1
and pred2. The resources used are indicated in the tables; ALU does add and subtract, = is a
comparator, [] is an array address decoder and << is a shifter. All components used have single
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ADPCM Encode (37 BBs)
Type of 1ALU; 2 ==; 2[ ]; 1 <<

Code Motion # States Long. Path

Within BBs 32 313
+across HTGs 27(-15.6%) 262(-16.3%)
+speculation 23(-14.8%) 222(-15.3%)
+reverse spec 23( 0 %) 222( 0 %)
+early cond 20(-13.0%) 192(-13.5%)

Total Reduction 37.5 % 38.7 %

Table 1: Comparison of various types of code motion for the ADPCM Encode benchmark

MPEG Prediction Block 3ALU; 1�; 2[ ]; 3 <<; 2 ==
calc forw (36 BBs) pred0 1 (30 BBs) pred2 (52 BBs)

# States Long. Path # States Long. Path # States Long. Path

Within BBs 35 35 44 2588 48 5391
+across HTGs 25(-28.6%) 25(-28.6%) 41(-6.8%) 2396(-7.4%) 44(-8.3%) 5006(-7.1%)
+speculation 24(-4%) 24(-4%) 28(-31.7%) 1564(-34.7%) 31(-29.5%) 3278(-34.5%)
+reverse spec 24(0%) 24(0%) 28(0%) 1564(0%) 31(0%) 3278(0%)
+early cond 23(-4.2%) 23(-4.2%) 27(-3.6%) 1563(-0%) 31(0%) 3278(0%)

Total Reduction 34.3 % 34.3 % 32.6 % 32.3 % 37.5 % 36.8 %

Table 2: Comparison of various types of code motion for the MPEG Pred benchmarks

cycle execution time. The number of resources has been chosen so as to get shortest schedule length
possible.

Tables 1 and 2 compares results for code motions only within basic blocks (�rst row), across
Hierarchical Task Graphs (HTGs), i.e., across entire if-then-else structures and loops but with-
out speculation (second row), then with speculation enabled (third row), with reverse speculation
enabled as well (fourth row) and the �fth row also performs the early condition execution code
transformation1. The number of states in the FSM and the longest path length (execution cycles)
are presented along with the percentage reductions of each row over the previous row in parentheses.

Signi�cant reductions are achieved when code motions across HTGs are enabled and then again
when speculation is enabled. The tables demonstrate that reverse speculation on its own does
not lead to improvements, but when performed as a part of early condition execution, additional
reductions of up to 13 % can be achieved. The maximum bene�ts by this transformation are seen
in the ADPCM benchmark since this benchmark is highly control intensive with nearly as many
conditional checks as operations. The total reduction in execution cycles achieved with all the
transformations enabled over code motion within basic blocks is up to 38 %.

We have synthesized the RTL VHDL generated by Spark using Synopsys's Design Compiler

and present the results for two functions from the MPEG Pred benchmark in Tables 3 and 4. The
columns in these tables present the results the critical path length (c nanoseconds), the execution
cycles of the longest path (l), the total delay through the design (c.l nanoseconds) and the unit area
(total of the combinational and non-combinational areas). The unit area is based on the technology

1Although both benchmarks have loops, we have not applied any loop transformations, across loop boundary code

motion or loop unrolling for these experiments
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calculate forward motion func(36 BBs)
Type of

Crit. P. Long. Delay Unit
Code Motion

(c ns) P.(l) (c.l nanosec) Area

Within BBs 22.30 35 780.5 10752
+across HTGs+spec 22.81 24 547.4(-29.8%) 14813(+27.4%)
+rev spec+early cond 22.49 23 517.3(-5.5%) 14261(-3.7%)

Table 3: E�ect of code motion on the logic synthesis results for the calculate forward motion

function of the MPEG Pred benchmark

pred case 0 1 function(30 BBs)
Type of

Crit. P. Long. Delay Unit
Code Motion

(c ns) P.(l) (c.l nanosec) Area

Within BBs 22.31 2588 57738 276077
+across HTGs+spec 22.46 1564 35127(-39.2%) 286019(+3.5%)
+rev spec+early cond 21.86 1563 34167(-2.7%) 290882(+1.7%)

Table 4: E�ect of code motion on the logic synthesis results for the pred case 0 1 function of the
MPEG Pred benchmark

library being used; we have used the LSI-10K library that is distributed with Synopsys tools. The
percentage reductions in the delay and area over those in the previous row are given in parentheses.

The �rst row in these tables give results for only within basic block code motions, the second row
with across HTGs and speculation also enabled and the third row with all code motions enabled.
These tables shows that total delay of the design can be reduced signi�cantly by speculation and
early condition execution. Speculation comes with a higher area cost since we have not done any
binding and rely on the logic synthesis tool for this. This leads to higher storage, interconnect and
control costs. However, the critical path length of the design remains almost constant and hence,
the clock cycle length does not increase due to these techniques.

Table 5 compares the results of our system, Spark with Brewer [6] and Jess [7] for the benchmarks
waka [5], rotor and s2r [6] for the indicated resources. The columns present the number of basic
blocks, the longest path length/cycles and the CPU run time in seconds of Brewer's system on
a SUN Sparc Station 10 (probably running at 33 or 66 Mhz) and of Spark on a 170 Mhz SUN
Sparc Station 5. The results show that the Spark system produces similar results when compared
to the other systems for these benchmarks. Although we do not have the run times for the system
\Jess", this system uses combinatorial approaches such as genetic algorithms or simulated annealing
for search space exploration which usually have high run times. This table demonstrates that by
making judicious choices of code motions, using even a simple priority list scheduling heuristic,
the Spark system is able to produce good results without resorting to more complex scheduling
heuristics.

6 Conclusions and Future Work

In this paper, we have presented a comparative study of the e�ects of various kinds of code mo-
tions on the quality of results of high-level synthesis and studied which are most e�ective. The
results demonstrate that code motions across entire conditional blocks and speculative code mo-
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Jess Brewer Spark
Bench # Resources Sch Sch Run Sch Run
mark BBs Len Len Time Len Time

waka 9 1+,1-,2= 7 7 - 7 0.1
rotor 11 2+-,2*,1[ ] 7 7 13.7 7 0.16
s2r 21 3+-,2*,1[ ] 8 9 177.9 9 0.38

Table 5: Comparison with previous work

tions lead to most improvements. Early condition execution can provide an additional reduction
up to 13 % in execution cycles for highly control-intensive designs. We have tried to compare our
approach to similar works using commonly used benchmarks. However, this is not always possible
mainly because of our focus on control intensive and moderately complex designs. We are currently
implementing resource binding to reduce the area increase due to code motions.
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