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Abstract
Translation validation is a technique for checking that, after an op-
timization has run, the input and output of the optimization are
equivalent. Traditionally, translation validation has been used to
prove concrete, fully specified programs equivalent. In this paper
we present Parameterized Equivalence Checking (PEC), a gener-
alization of translation validation that can prove the equivalence
of parameterized programs. A parameterized program is a partially
specified program that can represent multiple concrete programs.
For example, a parameterized program may contain a section of
code whose only known property is that it does not modify certain
variables. By proving parameterized programs equivalent, PEC can
prove the correctness of transformation rules that represent com-
plex optimizations once and for all, before they are ever run. We im-
plemented our PEC technique in a tool that can establish the equiv-
alence of two parameterized programs. To highlight the power of
PEC, we designed a language for implementing complex optimiza-
tions using many-to-many rewrite rules, and used this language to
implement a variety of optimizations including software pipelin-
ing, loop unrolling, loop unswitching, loop interchange, and loop
fusion. Finally, to demonstrate the effectiveness of PEC, we used
our PEC implementation to verify that all the optimizations we im-
plemented in our language preserve program behavior.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification – correctness proofs, relia-
bility, validation; D.3.4 [Programming Languages]: Processors –
compilers, optimization

General Terms Reliability, Languages, Verification.

Keywords Compiler Optimization, Correctness, Translation Vali-
dation.

1. Introduction
Compilers are a fundamental component of the toolset program-
mers rely on every day. As a result, compiler correctness is crucially
important. A bug in the compiler can systematically introduce er-
rors in each generated executable. Furthermore, compiler bugs can
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invalidate strong guarantees that were established on the original
source program. As an example, various analysis tools can prove
the absence of certain kinds errors at the source level (e.g. dou-
ble locking or null pointer exceptions). However, if the compiler is
not guaranteed to be correct, then no source-level guarantees can
be safely transferred to the generated code. Finally, compiler cor-
rectness is all the more important in high-assurance domains like
avionics and medical equipment, where the cost of incorrect com-
pilation can be extremely high.

Unfortunately, building reliable compilers is difficult, error-
prone, and requires significant manual effort. Indeed, it takes a long
time to develop a compiler that is stable enough for broad adoption
(often up to a decade), which in turn hinders the development of
new languages and architectures.

One of the most error prone parts of a compiler is its optimiza-
tion phase. Many optimizations require an intricate sequence of
complex transformations. Often these transformations interact in
unexpected ways, leading to a combinatorial explosion in the num-
ber of cases that must be considered to ensure that the optimization
phase is correct. In fact, even mature compilers have optimization
bugs and as a result professional developers sometimes go as far
as disabling optimizations in critical modules to lower the likeli-
hood of incorrectly generated code. Unfortunately, it is becoming
less and less feasible to increase the reliability of a compiler by
simply disabling most of its optimizations: with the widespread
adoption of systems whose good performance depends heavily on
compiler optimizations – for example just-in-time compilers and
higher-level languages – turning off the optimizer is no longer
an option. Furthermore, the difficulties of developing correct op-
timizations also prevent end-user programmers (non-compiler ex-
perts) from extending the compiler with simple custom optimiza-
tions, making most compilers closed black boxes, rather than open-
ended extensible frameworks.

Previous techniques for providing correctness guarantees for
optimizations can be divided into two categories. In the first cat-
egory optimizations are proved correct once and for all [7, 31, 8, 2,
14, 15, 16]. In this setting, to prove that an optimization is correct,
one must prove that for any input program the optimization pro-
duces a semantically equivalent program. The second category con-
sists of proving correctness each time an optimization is run. Here,
each time the compiler runs an optimization, an automated tool tries
to prove that the original program and the corresponding optimized
program are equivalent. This technique, which is called translation
validation, has been successfully applied in a variety of settings,
including mature optimizing compilers [20, 19, 22, 6, 32, 27, 28],
refinement checking of CSP programs [11], and high-level synthe-
sis validation [12].

The primary advantage of once-and-for-all techniques is that
they provide a very strong guarantee: optimizations are known to
be correct when the compiler is built, before they are run even once.



In contrast, translation validation provides a weaker correctness
guarantee. This is because translation validation guarantees that
only a particular run of the optimization is correct. Compilers
that include translation validation may still contain bugs and it is
unclear what a programmer should do when the compiler is unable
to correctly compile a program.

On the other hand, translation validation has a clear advantage
over once-and-for-all techniques in terms of automation. Most of
the techniques that provide once-and-for-all guarantees require user
interaction. Those that are fully automated, for example Cobalt [14]
and Rhodium [15], work by having programmers implement opti-
mizations in a domain-specific language using flow functions and
single-statement rewrite rules. Unfortunately, the set of optimiza-
tions that these techniques can prove correct has lagged behind
translation validation. In particular, translation validation can al-
ready handle complex loop optimizations like skewing, splitting
and interchange, which have thus far eluded automated once-and-
for-all approaches. A common intuition is that once-and-for-all
proofs are harder to achieve because they must show that any appli-
cation of the optimization is correct, as opposed to a single instance.

In this paper, we present a new technique for proving optimiza-
tions correct called Parameterized Equivalence Checking (PEC)
that bridges the gap between translation validation and once-and-
for-all techniques. PEC generalizes translation validation to han-
dle parameterized programs, which are partially specified programs
that can represent multiple concrete programs. For example, a pa-
rameterized program may contain a section of code whose only
known property is that it does not define or use a particular vari-
able.

The key insight of PEC is that existing translation validation
techniques can be adapted to work in the broader setting of param-
eterized programs. This allows translation validation techniques,
which have traditionally been used to prove concrete programs
equivalent, to prove parameterized programs equivalent. Most im-
portantly, because optimizations can be expressed as nothing more
than parameterized transformation rules, using before and after pa-
rameterized code patterns, PEC can prove once and for all that such
optimizations preserve semantics.

To highlight the power and generality of PEC, we designed
a new language for writing optimizations, and implemented a
checker based on PEC that can automatically check the correctness
of optimizations written in this language. Our language for imple-
menting and proving optimizations correct is much more expres-
sive than previous such optimization languages, like Cobalt [14]
and Rhodium [15]: whereas Cobalt and Rhodium only supported
local rewrites of a single statement to another, our language sup-
ports many-to-many rewrite rules. Such rules are able to replace
an entire set of statements, even entire loops and branches, with
a completely different set of statements. Using these rules, we can
express many more optimizations than in Cobalt and Rhodium, and
we can also prove them all correct using our PEC algorithm.

In summary, our contributions are:

• We developed and implemented a technique for performing Pa-
rameterized Equivalence Checking. PEC adapts two approaches
from traditional translation validation to the setting of once-
and-for-all correctness proofs, namely the relational approach
of Necula [19], and the permute approach of Zuck et al. [32].

• We developed a new language for implementing optimizations.
Our language is more expressive than previous languages that
can be checked for correctness automatically: it has explicit
support for expressing many-to-many transformations, meaning
that a set of statements can be transformed to another set of
statements in a single rewrite.

i := 0
while (i < n) {

a[i] += 1;
b[i] += a[i];
c[i] += b[i];
i++;

}

a[0] += 1;
b[0] += a[0];
a[1] += 1;
i := 0
while (i < n - 2) {

a[i+2] += 1;
b[i+1] += a[i+1];
c[i] += b[i];
i++

}
c[i] += b[i];
b[i+1] += a[i+1];
c[i+1] += b[i+1];

(a) (b)

Figure 1. Software pipelining: (a) shows the original code, and (b)
shows the optimized code.

• We implemented and proved correct a variety of complex op-
timizations in our system. Some of these optimizations, for
example partial redundancy elimination, could have been ex-
pressed and proved correct in Rhodium [15], but they are eas-
ier to express in our language because of the built-in sup-
port for many-to-many rewrite rules. Furthermore, many of the
optimizations we implemented and proved correct could not
be proved correct or even expressed in previous systems like
Rhodium. This includes: software pipelining, loop unswitch-
ing, loop unrolling, loop peeling, loop splitting, loop alignment,
loop interchange, loop skewing, loop reversal, loop fusion and
loop distribution.

The rest of the paper is organized as follows. Section 2 presents
an overview of our approach through an example. Section 3 de-
scribes our PEC system at an architectural level, identifying its
three main modules. The following three sections (Sections 4, 5
and 6) present each of the three modules in more detail. Finally,
Section 7 presents our experimental results.

2. Overview
We illustrate the main ideas of our approach through an example:
software pipelining. Software pipelining is an optimization that
tries to break dependencies within a loop body by spreading in-
structions from one iteration in the original program across multi-
ple iterations of the transformed program. Software pipelining can
break dependencies inside a loop body, and thus provides more
flexibility to the scheduler, but it does so without increasing the
code size of the loop body (as opposed to loop unrolling, which
also provides more flexibility to the scheduler, but may have ad-
verse effects on the cache by increasing the loop body size).

As an example, consider the code in Figure 1(a). The loop
updates three arrays iteratively, but because each update depends
on the previous one, each instruction in the loop must wait until
the instruction immediately before it finishes. Figure 1(b) shows
the result of applying software pipelining on this loop. The key
insight is that, in the steady state, the transformed loop still runs the
same three instructions from the original loop, but now each of the
three instructions is from a different iteration of the original loop.
The a[i+2] instruction runs two iterations ahead; the b[i+1] runs
one iteration ahead; and the c[i] instruction runs on the current
iteration. In order to get into this steady state, one has to add a
prologue at the beginning of the transformed loop in order to setup
the pipelining effect. There is also an epilogue after the loop to
execute the remaining instructions.
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I := 0
L1 : S0

L2 : while (I < E) {
L3 : S1

L4 : S2

L5 : I++
}

3
77777775

=⇒

2
6666666666664

I := 0
S0

S1

while (I < E-1) {
S2

I++
S1

}
S2

I++

3
7777777777775

where
DoesNotModify(S0, I)@L1∧
DoesNotModify(S1, I)@L3 ∧ DoesNotModify(S2, I)@L4∧
StrictlyPositive(E)@L2 ∧ DoesNotModify(S1,E)@L3∧
DoesNotModify(S2,E)@L4 ∧ DoesNotModify(I++,E)@L5

Figure 2. First part of software pipelining

2
4 L1 : S2

I++
S1[ I ]

3
5 =⇒

2
4 S1[ I+1 ]

S2

I++

3
5

where DoesNotModify(S2, I)@L1∧
Commute(S2,S1[ I+1 ])@L1

Figure 3. Second part of software pipelining

fact StrictlyPositive(E)
has meaning eval(σ,E) > 0

fact DoesNotModify(S,E)
has meaning eval(σ,E) = eval(step(σ,S),E)

fact Commute(S1,S2)
has meaning step(step(σ,S1),S2) = step(step(σ,S2),S1)

Figure 4. Meanings of some facts that we use in our system

Software pipelining is a non-trivial optimization, with many
subtle corner cases that need to be correctly implemented. The pro-
logue and the epilogue must execute a precisely crafted sequence of
instructions to setup and unwind the steady state; the instructions in
the loop must be correctly re-indexed; and the entire optimization
must be applied only if no dependencies in the original program
would be broken by software pipelining.

2.1 Expressing Software Pipelining

We implement software pipelining in our language as the repeated
application of two simple optimizations. In Figure 2 we show the
first one, which simply moves some instructions (namely S1) from
the current iteration to the next iteration. Optimizations in our lan-
guage are written as parameterized rewrite rules with side condi-
tions: P1 =⇒ P2 where φ, where P1 and P2 are parameterized
programs, and φ is a side condition that states when the rewrite rule
can safely be fired. An optimization P1 =⇒ P2 where φ states that
when a concrete program is found that matches the parameterized
program P1, it should be transformed to P2 if the side condition φ
holds.

Parameterized programs. A parameterized program is a partially
specified program that can represent multiple concrete programs.
For example, in the original and transformed programs from Fig-
ure 2, S0 ranges over concrete statements (including branches,
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I := 0
S0

while (I < E) {
S1[ I ]
S2

I++
}

3
77777775

=⇒

2
6666666666664

I := 0
S0

S1[ I ]
while (I < E-1) {

S1[ I+1 ]
S2

I++
}
S2

I++

3
7777777777775

Figure 5. Software pipelining as one rewrite rule

loops, and sequences of statements) that are single-entry-single
exit; I ranges over concrete program variables; and E ranges over
concrete expressions. Because variables like S0, I and E range
over the syntax of concrete programs, we call such variables meta-
variables. To simplify exposition, rather than provide explicit types
for all meta-variables, we instead use the following naming con-
ventions: meta-variables starting with S range over statements,
meta-variables starting with E range over expressions, and meta-
variables starting with I range over variables.

Side Conditions. The side conditions are boolean combinations of
facts that must hold at certain points in the original program. For
example the side condition DoesNotModify(S0, I)@L1 in Figure 2
states that at location L1 in the original program S0 should not
modify I. In general, side conditions are first-order logic formulas
with facts like DoesNotModify(S0, I)@L1 as atomic predicates.

Each fact used in the side condition must have a semantic
meaning, which is a predicate over program states. Figure 4 gives
the semantic meanings for the three primary facts that we use in our
system. In general, meanings can be first-order logic formulas with
a few special function symbols: (1) σ is a term that represents the
program state at the point where the fact holds. (2) eval evaluates
an expression in a program state and returns its value; (3) step
executes a statement in a program state and returns the resulting
program state.

The semantic meanings are used by the PEC algorithm to de-
termine the semantic information that can be inferred from the side
conditions when proving correctness. Although optimization writ-
ers must provide these meanings, in our experience we have found
that there is a small number of common facts used across many dif-
ferent optimizations (for example DoesNotModify), and since these
meanings only need to be written once, the effort in writing mean-
ings is not onerous.

Executing optimizations. Optimizations written in our language
are meant to be executed by an execution engine. When running
an optimization P1 =⇒ P2 where φ, the execution engine must
find concrete program fragments that match P1. Furthermore, it
must perform some program analysis to determine if the facts in
the side condition φ hold. One option for implementing these pro-
gram analyses is to use a general purpose programming language.
Although this provides the most flexibility, it does not guarantee
that the facts in the side condition are computed correctly. Alter-
natively, if one wants stronger correctness guarantees, the facts in
the side conditions can be computed in a way that guarantees that
their semantic meanings hold, for example using the Rhodium sys-
tem of Lerner et al. [15], or using Leroy’s Compcert system [16].
Although all the side conditions we used in our system pertain to
the original program, it is also possible to express side conditions
over the transformed program. In such cases, the execution engine
would check the side conditions by building the transformed pro-
gram before knowing that all the side conditions hold, and then
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i := 0
while (i < n) {
a[i] += 1; ← S1[ I ]
b[i] += a[i];
c[i] += b[i];

ff
← S2

i++;
}

3
77777775

=⇒

2
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i := 0
a[i] += 1
while (i < n - 1) {

a[i+1] += 1;
b[i] += a[i];

ff
← S1[ I ]

c[i] += b[i]; ← S2

i++;
}
b[i] += a[i];
c[i] += b[i];
i++

3
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=⇒

2
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i := 0
a[i] += 1;
a[i+1] += 1;
b[i] += a[i];
while (i < n - 1 - 1) {
a[i+1+1] += 1;
b[i+1] += a[i+1];
c[i] += b[i];
i++
}
c[i] += b[i];
i++
b[i] += a[i];
c[i] += b[i];
i++

3
7777777777777777777775

Figure 6. Two successive applications of the rewrite rule from Figure 5

running analyses on the transformed program to determine if the
transformation can safely be performed.

The second part of software pipelining, shown in Figure 3,
simply reorders statements. This optimization uses a new kind of
meta-variable, S1[ I ]. In this case S1 is a program fragment with
a hole in it, and I fills in the hole. The S1[ I ] pattern is interpreted
as follows: S1 matches any single-entry-single-exit piece of code
that contains direct uses of a variable I, but no modifications of I.
In such cases S1 gets matched to the code, but with holes wherever
I occurs, so that S1[ I+1 ] represents the original statement with I
replaced by I+1. The fact that I is not modified in S1 and that S1

captures all uses of I allows us to treat such statements as function
calls from a verification point of view.

The side condition in Figure 3 uses a new fact called Commute,
which holds when two statements can be re-ordered. There are
a variety of ways of implementing such a predicate when the
compiler runs, for example the Omega test [21], or more generally
dependence analysis [18]. We also show in Section 6 how we can
express a version of Commute that can be written more easily in
Rhodium, and thus proved correct automatically.

To ease presentation of how our software pipelining optimiza-
tion operates, Figure 5 uses a single rewrite rule to summarize the
effect of running the transformation from Figure 2 followed by the
one from Figure 3. We show in Figure 6 how two applications of
this single rewrite rule performs software pipelining on our exam-
ple. At each step, we show what S1 and S2 are instantiated with.
If there were more statements in the loop, the transformation from
Figure 5 could be applied more times, with S1 ranging over one
additional statement each time.

2.2 Proving Correctness of Software Pipelining

Our goal is to show that the software pipelining optimization writ-
ten in our language is correct, once and for all, before it is even
run once. To do this, we must show that each of the rewrite rules
from Figures 2 and 3 satisfy the following property: given the side
conditions, the original parameterized program and the transformed
parameterized program have the same behavior. To illustrate the
salient features of our approach, we show how we can prove the
first and more complicated part of software pipelining, namely the
rewrite rule from Figure 2.

Parameterized Equivalence Checking. Translation validation
(TV) is a technique that has been used to prove equivalence of pro-
gram fragments. Traditionally, TV is applied while the compiler
is running, and so TV proves concrete, fully specified programs
equivalent. In our setting, we are attempting to prove parameter-

ized programs equivalent. To achieve this, we developed a tech-
nique called Parameterized Equivalence Checking (PEC) that gen-
eralizes traditional TV techniques to the setting of parameterized
programs.

There are two simple observations that intuitively explain why
techniques from translation validation can be generalized to param-
eterized programs. The first observation is that if a program frag-
ment S in the original program executes in a program state σ, and
the same program fragment S executes in the transformed program
in the same state σ, then we know that the two resulting states are
equal. This shows that we can reason about state equality even if
we don’t know what the program fragments are. The second obser-
vation is that when proving equivalence, we are usually interested
in some key invariants that justify the optimization. The insight is
that the semantic meaning of the side condition captures precisely
when these key invariants can be propagated throughout statements
that are not fully specified. For example, if the correctness of an
optimization really depends on I not being modified in a region of
code, the side condition will allow us to know this fact, and thus
reason about I across such unknown statements.

Bisimulation relations. PEC proves equivalence using bisimula-
tion relations, which are defined in terms of the more basic concept
of correlation relations. A correlation relation is a set of entries,
where each entry relates a program point in the original program
with a corresponding program point in the transformed program.
Each correlation relation entry also has a predicate that indicates
how the state in the original program is related to the state of the
transformed program at that point. A bisimulation relation is sim-
ply a correlation relation that satisfies the property that the predi-
cate on any entry in the relation implies the predicate on all entries
reachable from it.

The PEC approach works in two steps. In the first step we
generate a correlation relation. In the second step, we check if the
generated correlation relation has all the properties required to be a
bisimulation relation, and if not, we iteratively strengthen it until it
does.

Figure 7 shows the control flow graph (CFG) of the original and
the transformed programs in our example, along with the correla-
tion relation that our approach generates. The entries in the relation
are labeled A through G, and each entry has a predicate associated
with it. These predicates operate over the program states σ1 and
σ2 of the original and transformed program. To make the notation
cleaner, we use some shorthand notation. For example, E1 means
eval(σ1,E). Using this notation, the predicate at edge D states that
(1) the two programs states σ1 and σ2 are equal, (2) I < E holds
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Figure 7. CFGs of running example with the correlation relation

in σ1 and (3) I < E− 1 holds in σ2. In this example, our approach
would determine that the generated correlation relation is in fact a
bisimulation relation and as a result does not need to be strength-
ened.

Generating a correlation relation. To generate the correlation re-
lation, our PEC algorithm first adds edge A with predicate σ1 =
σ2; this indicates that we can assume the program states are equal
at the top of the code. It also adds edge G with predicate σ1 = σ2;
this indicates that we must establish that the program states are
equal after the two programs execute. To generate the points in be-
tween, our algorithm traverses both programs in parallel from the
top entry. Each time a statement is reached like S0, S1, and S2,
the algorithm finds the corresponding point in the other program,
and adds a relation entry between the two statements with the predi-
cate σ1 = σ2 (since this is the only mechanism we have to preserve
equivalence of arbitrary statements). Finally, our algorithm for gen-
erating a correlation relation strengthens the predicate along each
side of a branch with the branch condition, which leads to the var-
ious conditions relating I and E in Figure 7. This allows entries in
the bisimulation relation to encode information about what branch
conditions they are under.

Strengthening the correlation relation. Once a correlation rela-
tion is generated, our PEC algorithm checks whether or not it is a
bisimulation relation, and if not, iteratively strengthens it. In par-
ticular, we must show that the predicate at a given entry is strong
enough to imply the predicates at all entries reachable from it. To
achieve this, our approach traverses the two programs in parallel
starting at each correlation relation entry to find the next reachable
entries. Then, for each discovered path between a correlation rela-
tion entry X and another entry Y , our algorithm asks a theorem
prover to show that, if the two programs start executing at X in
states where X’s predicate holds, and Y is reached, then Y ’s pred-
icate holds.

In our example from Figure 7, the paths that our algorithm
would discover between correlation relation entries are as follows:
A to B, B to C, C to F, C to D, D to E, E to D, E to F, and F to G.

As an example, for the B-C path, our tool would ask a theorem
prover to show that, for any σ1 and σ2: if (1) σ1 = σ2 holds and

(2) the original program executes [S0; assume(I < E)] and (3) the
transformed program executes [S0], then σ1 = σ2 ∧ eval (σ1, I) <
eval(σ1,E) will hold after the two statements have executed. In
this case, the implication follows immediately from the assume
and the fact that S0 produces the same program state if started in
the same program state. If for some path pair X to Y, the implication
does not hold (this is not the case in Figure 7), our algorithm would
strengthen the condition at X with the weakest precondition of the
condition at Y. Using such iterative strengthening, our algorithm
tries to convert the original correlation relation into a bisimulation
relation.

Our algorithm must also prune infeasible paths when it performs
the checks. For example, when starting at F, it is impossible for the
original program to stay in the loop – it must exit to G. Our checker
can determine this from the predicate at F. In particular, let i and e
be the original values of I and E at F (in either σ1 or σ2 since they
are equal). The value e does not change through the loop as stated
by the side conditions. If the original program chooses to stay in
the loop, the assume(I < E) would give us i + 1 < e (where the
“+1” comes from the increment of I and the fact that S2 does not
modify I). This would be inconsistent with the assumption from F
stating that i ≥ e− 1, and thus the path is pruned.

2.3 Benefits or our approach

Our PEC approach has several benefits over previous techniques for
proving optimizations correct in a fully automated way. First, PEC
can prove the correctness of complex rewrite rules once and for all,
something that previous systems like Rhodium were not able to do.
This allows us to implement and prove many more optimizations
correct, as discussed in Section 7, thus improving the state of the
art of the set of optimizations that can be proved automatically once
and for all.

Second, because parameterized programs can contain concrete
statements, PEC can in fact prove fully concrete programs equiv-
alent (with no side conditions provided). In this setting, our PEC
technique subsumes many previous approaches to translation val-
idation, for example the relation approach of Necula [19] and the
permute approach of Zuck et al. [6].

Finally, PEC enables a new staged paradigm for optimization
verification: we can use PEC to check as many of the optimizations
as possible before they are run. For those optimizations that we
can’t prove correct once and for all, we can use PEC again when
the compiler is running to perform translation validation on the
concrete input/output pairs.

3. Parameterized Equivalence Checking
We now describe our approach in more detail. Our goal is to show
that two parameterized programs P1 and P2 are equivalent under
side conditions φ. We represent each program P as a Control Flow
Graph (CFG), which we denote by π. In particular, we assume that
π1 is the CFG of the original program, and π2 is the CFG of the
transformed program. Each node in a CFG is a program location l,
and edges between program locations are labeled with statements.
We use ι1 and ι2 to denote the entry locations of π1, π2, and ε1, ε2
to represent the exit locations of π1, π2.

Given a program state σ, we use the notation π(σ) to represent
the program state after executing π starting in state σ.

DEFINITION 1 (Equivalence). Given two programs π1 and π2, we
define π1 to be equivalent to π2 if for any program state σ, we have
π1(σ) = π2(σ).

The above definition of equivalence allows us to use our optimiza-
tions anywhere inside in a program: by establishing program state
equivalence, we guarantee that the remainder of the program, after



the optimization, runs the same way in the original and the trans-
formed programs. We can model observable events such as IO us-
ing heap updates. For example, a call to printf can just append its
arguments to a linked list on the heap. In this setting, our approach
guarantees that the order of IO events is preserved.

The statements in our CFGs are taken from a concrete program-
ming language of statements, extended with meta-variables. The
main components of our approach do not depend on the choice of
the concrete language of statements that we start with: this lan-
guage can for example include pointers, arrays, and function calls.
We do however make one exception to this rule: we assume the ex-
istence of assume statements. In particular, we model conditionals
using assume statements on the edges that flow away from a branch
location (as shown for example in Figure 7). We also use assume
statements to insert the information from side conditions into the
original or transformed program as needed, so that our tool can
reason about the side conditions. The choice of concrete language
only affects the semantics of statements, which is entirely modu-
larized in a function called step (which we have already seen). The
only part of the system that knows about step is the theorem prover,
which is given background axioms about the semantics of instruc-
tions (so that it knows for example how I++ updates the store). All
other parts of the system treat step as a black box.

Bisimulation relations. Our approach is based on using a bisim-
ulation relation to relate the execution of the original program and
the transformed program. Before defining what a bisimulation rela-
tion is, we first define a more basic concept, which is a correlation
relation R. A correlation relation R is a set of triples of the form
(l1, l2, ψ), where l1 is a location in π1, l2 is a location in π2, and
ψ is a formula relating the program states at l1 and l2. In partic-
ular, ψ is a formula over σ1 and σ2, the states in the original and
transformed program respectively.

Since ψ is a predicate with free variables σ1 and σ2, we can
use ψ as a function from two program states to booleans. We use
the notation l ∈ R to mean (l, , ) ∈ R or ( , l, ) ∈ R, where
is a wildcard that pattern matches anything. If l ∈ R, we say that
l occurs in R. We define a relation −→R which is the successor
relation on CFGs, except that it skips locations not in R. In order
to define just one relation −→R for both CFGs π1 and π2, we
assume without loss of generality that the two CFGs π1 and π2

have disjoint locations. With this assumption, −→R is defined as:
l

p−→R l′ holds iff l ∈ R and l′ ∈ R and there is path p in the
CFG of π1 or π2 from l to l′ such that none of the locations on the
path, except end points, occur inR.

Simulation and bisimulation relations are correlation relations
with some additional properties. Below we define these relations
by adapting previous work [17] to the setting of CFGs.

DEFINITION 2 (Simulation Relation). A correlation relation R is
a simulation relation for π1, π2 iff it satisfies the following proper-
ties:

1. (ι1, ι2, σ1 = σ2) ∈ R and (ε1, ε2, σ1 = σ2) ∈ R
2. for any l1, l′1, l2, p1, ψ, if (l1, l2, ψ) ∈ R and l1

p1−→R l′1 then
there exists l′2, ψ

′, p2 such that (l′1, l
′
2, ψ

′) ∈ R and l2
p2−→R l′2

and ∀σ1, σ2 . ψ(σ1, σ2)⇒ ψ′(step(σ1, p1), step(σ2, p2)).

DEFINITION 3 (Bisimulation Relation). A correlation relation R
is a bisimulation relation for π1, π2 iff R is a simulation relation
for π1, π2 andR−1 is a simulation relation for π2, π1, whereR−1

is defined by (l1, l2, ψ) ∈ R iff (l2, l1, ψ) ∈ R−1.

THEOREM 1 (Bisimulation Equivalence). If there exists a bisimu-
lation relation between π1 and π2 then π1 and π2 are equivalent.

function PEC(π1, π2, φ)
let (π′

1, π
′
2) := Permute(π1, π2, φ)

letR := Correlate(π′
1, π

′
2)

return Check(R, π′
1, π

′
2, φ)

Figure 8. Parameterized Equivalence Checking

The conditions from Definition 2 are the base case and the in-
ductive cases of a proof by induction showing that π1 is equivalent
to π2. Thus, a bisimulation relation is a witness that two CFGs are
equivalent. Our approach is based on the above theorem. In partic-
ular, our general approach is to try to infer a bisimulation relation
to show that π1 and π2 are equivalent.

Architectural overview. Figure 8 shows the pseudo-code of our
PEC approach. There are three steps: the Permute module, the Cor-
relate module and the Checker module. The Permute module runs
as a pre-processor before we use our main bisimulation-based ap-
proach. The Permute module applies a general form of the Permute
theorem that has been used in translation validation of loop opti-
mizations [6], but it does so on parameterized programs. After the
Permute module has run, the Correlate and Checker module imple-
ment our bisimulation approach. In particular, the Correlate mod-
ule first generates a correlation relation R from the two CFGs π1

and π2. The Checker module then makes sure that the properties
from Definitions 2 and 3 hold, possibly strengthening the relation
in order to guarantee property 2. The next three sections of the pa-
per describe each of the modules in our system. We first describe
the Correlate and Checker modules, which are at the heart of our
approach, and then move on the Permute module, which acts as a
preprocessing step.

4. Correlate module
To prove that two parameterized programs are equivalent our ap-
proach attempts to discover a bisimulation relation between them.
To do this, the Correlate module computes a correlation relation,
which will then be strengthened to a bisimulation relation by the
Checker module.

Two kinds of locations in π1 and π2 are particularly important
while constructing the correlation relationR: locations that imme-
diately precede a statement meta-variable, the set of which we de-
note LS , and locations that immediately precede an assume, the
set of which we denote LA. We define the→S and→A relations to
be the successor relation in the CFG, but skipping over nodes that
are not in LS or LA, respectively. We assume that the two CFGs
π1 and π2 have disjoint locations, which means we can use a sin-
gle version of LS that applies to both CFGs (and similarly for LA).
More precisely: (1) l →S l′ holds iff l′ ∈ LS and there exists a
path from l to l′ in π1 or π2 with no intermediate locations in LS ,
and (2) l

p→A l′ holds iff p is a path from l to l′ in π1 or π2 that has
no intermediate locations in LA and l ∈ LA ∪ {ι1, ι2}.

Using these definitions, the correlation relation that we compute
is the smallest relationR such that:

R(ι1, ι2, σ1 = σ2) ∧R(ε1, ε2, σ1 = σ2) (1)

∀l1, l2, l′1, l′2 .0
@ R(l1, l2, )∧

l1 →S l
′
1 ∧ l2 →S l

′
2∧

(l′1, l
′
2) 
= (ε1, ε2)

1
A⇒R(l′1, l

′
2,Cond(l′1, l

′
2))

(2)

where Cond(l1, l2) = Post(l1) ∧ Post(l2) ∧ σ1 = σ2

and Post(l) =
W

{l′ p→Al} SP(p, true)



1. function Check(R, π1, π2, φ)
2. letR := R∪ {(ι1, ι2, σ1 = σ2), (ε1, ε2, σ1 = σ2)}
3. let (π′

1, π
′
2) := InsertAssumes(π1, π2, φ)

4. let P := ComputePaths(R, π′
1, π

′
2)

5. if P = Fail then return Fail
6. let C := GenerateConstraints(P)
7. return SolveConstraints(C,R)

8. function ComputePaths(R, π1, π2)
9. let P := ∅
10. for each (l1, l2, ψ) ∈ R
11. for each p1, l

′
1 such that l1

p1−→R l′1 do
12. for each p2, l

′
2 such that l2

p2−→R l′2 do
13. if ¬Infeasible(p1, p2, ψ)
14. if (l′1, l

′
2, ) 
∈ R then return Fail

15. P := P ∪ {(l1, l2, p1, p2, l
′
1, l

′
2)}

16. return P

17. function Infeasible(p1, p2, ψ)
18. return ATP(¬(SP(p1, ψ) ∧ SP(p2, ψ))) = Valid

19. function GenerateConstraints(P)
20. let C := ∅
21. for each (l1, l2, p1, p2, l

′
1, l

′
2) ∈ P do

22. C := C ∪ {X(l1,l2) ⇒ PWP(p1||p2,X(l′1,l′2))}
23. return C

24. function SolveConstraints(C,R)
25. let soln := map from constraint vars to formulas
26. for each (l, l′, ψ) ∈ R do soln(X(l,l′)) := ψ
27. let worklist := C
28. while worklist not empty do
29. let [Xx ⇒ PWP(p1||p2,Xy)] := worklist.remove
30. let F := [soln(Xx)⇒ PWP(p1||p2, soln(Xy))]
31. if ATP(F ) 
= Valid then
32. if x = (ι1, ι2) then return Fail
33. soln(Xx) := soln(Xx) ∧ PWP(p1||p2, soln(Xy))
34. worklist := worklist ∪
35. {c ∈ C | c = [ ⇒ PWP( ,Xx)]}
36. return Success

Figure 9. Pseudo-code for the Checker module

Here Cond(l1, l2) computes the formula over σ1 and σ2 that
should hold when π1 and π2 are at locations l1 and l2 respec-
tively. Within Cond, the predicate Post(l) is the disjunction of the
strongest post conditions with respect to true over paths p for
which there exists some l′ such that l′

p→A l.
The Correlate function from Figure 8, which is the core of

the Correlate module, computes the correlation relation using the
above definition. In particular, it starts with an empty relation, and
first applies Formula (1) to correlate the entry and exit nodes. Then
it iteratively applies Formula (2) until no more entries can be added.

5. Checker module
The pseudo-code for the Checker module is shown in Figure 9.
The checker performs the following five steps: first, it makes sure
that the entry and exit locations are related with full state equal-
ity (line 2); then it inserts assume statements into the original and
transformed programs corresponding to the side conditions that are
given in the rewrite rule (line 3); then it computes the paths be-
tween entries in the correlation relation, doing path pruning any-
where possible (line 4); using the computed paths it generates a set

of constraints that the final correlation relation must satisfy to be
a bisimulation relation (line 6); finally it solves the generated con-
straints using a fixed point computation (line 7). We describe each
of these steps in more detail.

InsertAssumes. The InsertAssumes function inserts the side con-
dition assumptions into the original and transformed programs in
the form of assume statements. An assume statement takes as ar-
gument a predicate over the program state σ that occurs at the point
where the assume holds. To ease presentation, we make the simpli-
fying assumption that φ = φ1@L1 ∧ ... ∧ φn@Ln (our implemen-
tation handles the general case). For each side condition φi, we
define �φi� to be a predicate over σ that directly encodes the side
condition’s meaning provided by the optimization writer. Then for
each φi@Li, we find the location Li in either the original or the
transformed program, and insert assume(�φi�) at that location.

ComputePaths. The ComputePaths function computes the set of
paths P between entries of the correlation relationR. The function
starts by initializing the set of paths to the empty set (line 9). Then,
for each correlation relation entry (l1, l2, ψ) ∈ R, it finds the
reachable program points l′1 and l′2 in each program that are in the
correlation relation (lines 10-12). It does so using the l

p−→R l′

relation introduced in Section 3, which states that l occurs inR, l′

occurs in R, and there is a CFG path p from l to l′ where none
of the locations in the path, except for the end points, occur in
R. For each pair of paths p1, p2 that are found, ComputePaths
checks if the paths are infeasible by calling the Infeasible function.
Infeasible first computes the strongest postcondition of p1 and p2.
If an automated theorem prover (ATP) can show that the two
post-conditions are inconsistent, then the combination of those two
paths is infeasible, and can be pruned. The Infeasible function
performs the pruning that was intuitively described for the software
pipelining example in Section 2.2. If the paths are feasible and an
entry (l′1, l

′
2, ) exists in the correlation relation, then the two paths

are added to P , along with the beginning and end points (line 15).

GenerateConstraints. Once the set of paths in the correlation
relation have been collected, the GenerateConstraints function
computes the set of constraints C that our correlation relation must
satisfy to be a bisimulation relation. For each (l, l′, ) ∈ R,
we define a constraint variable X(l,l′) that represents the formula
in the correlation relation relating l and l′. Then, for each path
between two entries in the correlation relation (line 21), we add
a constraint stating that the predicate at the beginning of the path
must imply the predicate at the end of the path (line 22). We express
this condition using the weakest precondition computation PWP,
which is a parallel version of the regular weakest precondition.

The main challenge in expressing this weakest precondition is
that the traditional formulation of weakest precondition depends
on the structure of the statements being processed. As a result, it
is difficult to use this definition for statements like S0 and S1 in
our parameterized programs, because the precise structure of these
statements is not known. To address this challenge, we use an alter-
nate yet equivalent definition of weakest precondition. In particu-
lar, consider the traditional weakest precondition computation, and
assume that the predicate we are computing is a function from pro-
gram states to booleans. Then the traditional weakest precondition
WP can be expressed as:

WP(S, ψ)(σ) = ψ(step(σ,S))

If we assume that the program state σ is simply a free variable in
the predicate ψ, then WP can be expressed as:

WP(S, ψ) = ψ[σ �→ step(σ,S)]



Generalizing this to two parallels paths in two different pro-
grams, the predicates now have free variables σ1 and σ2, and we
can express PWP as follows:

PWP(p1||p2, ψ) = ψ[σ1 �→ step(σ1, p1), σ2 �→ step(σ2, p2)]

SolveConstraints. Once the set of constraints have been generated,
the SolveConstraints function tries to solve these constraints iter-
atively by starting with the correlation relation R, and iteratively
strengthening the conditions in the relation until all the constraints
are satisfied. In particular, SolveConstraints maintains a map soln
that maps each constraint variable to the formula we currently as-
sociate the variable with. The soln map is initialized with the predi-
cates from the correlation relation (line 26). SolveConstraints also
maintains a worklist of constraints to be processed, which is ini-
tialized with all the constraints (line 27). While the worklist is not
empty, SolveConstraints removes a constraint from the worklist
(line 29), and if the constraint is not satisfied (line 31), it strength-
ens the left-hand side of the implication in the currently stored solu-
tion (line 33), and adds to the worklist all the constraints that need
to be checked again because of the strengthening (line 35). One
subtlety is that we cannot strengthen the relation at the entry points
ι1, ι2. If we ever try to do this, we indicate a failure (line 32). Be-
cause SolveConstraints is trying to compute a fixedpoint over the
very flexible but infinite domain of boolean formulas, it may not
terminate. However, as our experiments show in Section 7, in prac-
tice SolveConstraints quickly finds a fixed point.

6. Permute module
Our main technique for PEC relies on a bisimulation approach to
prove equivalence. However, the bisimulation approach has some
known limitations. In particular, bisimulation relations are not well
suited for proving the correctness of non-structure preserving trans-
formations, which are transformations that change the execution
order of code across loop iterations. Previous work on translation
validation has devised a technique called Permute [32] for han-
dling such transformations on concrete programs. We have adapted
this technique to the setting of parameterized programs.

Our version of Permute runs as a pre-pass to our bisimulation
relation approach: Permute looks for loops in the original and
transformed programs that it can prove equivalent, and for the ones
it can, it replaces them with a new fresh variable S, which will then
allow the bisimulation relation part of our PEC approach to see that
they are equivalent.

Our Permute algorithm tries to find a general nested loop of the
following form, where we use ≺L to denote a total order on L

for i1 ∈ I1 by ≺I1 do
. . .

for in ∈ In by ≺In do

B(i1, · · · , in) ;

where Ij is the domain of the index variable ij

The relation ≺Ij represents the order in which the index variable
ij is traversed. The above general nested loop can be represented
more compactly as follows:

for �i ∈ �I by ≺�I do B(�i) ;

where �I = I1 × · · · × In and

�i ≺�I
�j ⇐⇒

n_
k=1

(i1, · · · , ik−1) = (j1, · · · , jk−1) ∧ ik ≺Ik jk

The relation ≺�I above is the lexicographic order on �I.

Our algorithm tries to find a loop structure as above in the orig-
inal program and in the transformed program, and for each such
pair, it tries to show that the following loop reordering transforma-
tion is correct:

for �i1 ∈ �I1 by ≺ �I1
do B(�i1)

⇓
for �i2 ∈ �I2 by ≺ �I2

do B(F (�i2))

(3)

The above transformation may change the order of the index
variables by changing the domain �I1 to �I2 and the relation ≺ �I1
to ≺ �I2

and also possibly changing the loop’s body by applying a

linear transformation from B(�i1) to B(F (�i2)).
To show that the above transformation is correct, we need to

ensure that the transformed loop executes the same instances of the
loop body in an order that preserves the body’s behavior. In order
to define the conditions under which this happens, we first define
when two program fragments commute.

DEFINITION 4 (Commute). We say two program fragments S1

and S2 commute, written S1 ≈ S2, if starting from an arbitrary
initial state, the resultant state of executing S1 and then S2 is the
same as executing S2 and then S1.

We can now guarantee that the original and transformed loops
are equivalent by requiring the following properties to hold:

1. There exists a 1-1 correspondence between �I1 and �I2.

2. For every �i1, �i2 ∈ �I1, if B(�i1) executes before B(�i2) in the
original program and B(�i2) executes before B(�i1) in the trans-
formed program then B(�i1) and B(�i2) commute, i.e. B(�i1) ≈
B(�i2)

The first property above can be established by showing that the
linear function F : �I2 −→ �I1 is a bijective function, i.e. F is
one-to-one and onto. This in turn can be guaranteed by defining
an inverse function F−1 : �I1 −→ �I2. The above observations are
summarized in the following Permute Theorem.

THEOREM 2 (Permute). A loop reording transformation of the
form shown in Formula (3) preserves semantics if the following
hold:

1. ∀�i2 ∈ �I2. F (�i2) ∈ �I1

2. ∀�i1 ∈ �I1. F−1(�i1) ∈ �I2

3. ∀�i2 ∈ �I2. �i2 = F−1(F (�i2))

4. ∀�i1 ∈ �I1. �i1 = F (F−1(�i1))

5. ∀�i1, �i′1 ∈ �I1. �i1 ≺ �I1
�i′1 ∧ F−1(�i′1) ≺ �I2

F−1(�i1)

=⇒ B(�i1) ≈ B(�i′1)

Theorem 2 was introduced and proved in previous work [32,
21, 23]. The Permute module tries to apply Theorem 2 by asking
an automated theorem prover to discharge the preconditions of the
theorem assuming the side conditions given in the transformation.
As an example, consider the simple loop interchange optimization
shown in Figure 10. For clarity and ease of explanation, the ex-
ample is simplified here to have constant bounds (L1, U1, L2, U2)
instead of arbitrary expressions. However, our tool checks the more
general version of this example.



2
6664

for (I := L1; I ≤ U1; I++ ) {
for (J := L2; J ≤ U2; J++) {

L1 : S[ I,J ]
}

}

3
7775

⇓2
6664

for (J := L2; J ≤ U2; J++) {
for (I := L1; I ≤ U1; I++) {

S[ I,J ]
}

}

3
7775

where ∀ K,L . (K 
= I ∧ L 
= J)⇒0
@ DoesNotModify(S[ I,J ],S[ K,L ])@L1 ∧

DoesNotModify(S[ K,L ],S[ I,J ], )@L1 ∧
DoesNotInterfere(S[ I,J ],S[ K,L ])@L1

1
A

fact DoesNotModify(S1,S2)
has meaning step(σ,S2)|σS2

= step(step(σ,S1),S2)|σS2

fact DoesNotInterfere(S1,S2)
has meaning step(σ,S2)|σS2

= step(step(σ,S2),S1)|σS2

Figure 10. Loop Interchange

The Permute module first transforms the original and trans-
formed programs into our canonical representations of loops. In
particular, the original program is summarized as

�I1 = {(i, j) | i ∈ [L1,U1], j ∈ [L2,U2]}
and B((i, j)) = S[ i, j ]

and ≺ �I1
is the lexicographic order on �I1

and the transformed program is represented as

�I2 = {(i, j) | i ∈ [L2,U2], j ∈ [L1,U1]}
and B((i, j)) = S[ j, i ]

and ≺ �I2
is the lexicographic order on �I2

Since there is one loop in the original program and one in the
transformed program, Permute tries to prove them equivalent. In
order to apply the Permute Theorem, our tool needs to infer the
two mapping functions F and F−1, and prove properties 1 through
4 of Theorem 2. Permute infers these functions automatically
using a simple heuristic that runs a range analysis over the original
and transformed programs, and uses the results of the upper and
lower bounds on index variables to infer F and F−1. For our
loop interchange optimization, our tool automatically infers that
the two functions are: F ((i, j)) = (j, i), and F−1((i, j)) = (j, i).
Our heuristic infers the appropriate mapping functions in all the
optimizations that we have tried (see Section 7). However, we also
provide the ability for the programmer to provide F and F−1 in the
case where our heuristic cannot find appropriate functions.

The purpose of the side conditions of loop interchange is to al-
low the theorem prover to show property 5 of Theorem 2. One op-
tion for expressing the side condition is to use the Commute fact
from Figure 4, which gives us a predicate very close to property
5 directly, and then use a heavyweight analysis when the com-
piler runs to establish Commute (for example a theorem prover, the
Omega test [21], or more generally dependence analysis [18]). An-
other option, which we use in Figure 10 to illustrate the flexibility
of our approach, is to use a more syntactic definition of commu-
tativity, using two new facts: DoesNotModify, which holds when a
statement does not modify the variables or heap locations that an-

Optimizations
Uses Time # ATP

permute (secs) calls
Category 1
Copy propagation No 1 3
Constant propagation No 1 3
Common sub-expression elim No 1 3
Partial redundancy elimination No 3 13
Category 2
Loop invariant code hoisting No 8 25
Conditional speculation No 2 14
Speculation No 3 12
Category 3
Software pipelining No 5 19
Loop unswitching No 16 94
Loop unrolling No 10 45
Loop peeling No 6 40
Loop splitting No 15 64
Loop alignment Yes 1 5
Loop interchange Yes 1 5
Loop reversal Yes 1 5
Loop skewing Yes 2 5
Loop fusion Yes 4 10
Loop distribution Yes 4 10

Figure 11. Optimizations proven correct using PEC. Category 1:
expressible and provable in Rhodium; Category 2: provable in
Rhodium, but our version is more general and easier to express;
Category 3: not expressible or provable in Rhodium.

other may read, and DoesNotInterfere, which holds when a state-
ment does not modify the variables or heap locations that another
may write to. The notation σ1|σ2

S represents the state σ1 projected
onto the variables and heap locations that S modifies if it exe-
cutes starting in state σ2. The benefit of using the more syntactic
DoesNotModify and DoesNotInterfere facts is that they can more
easily be implemented using simple Rhodium dataflow functions,
which in turn can be proved correct automatically. In this way we
will know that the computed facts when the compiler runs imply the
semantic meanings that our PEC technique assumed when proving
the correctness of loop interchange once and for all.

7. Evaluation
We implemented PEC in 2,408 lines of OCaml using the Simplify
theorem prover [5] to realize the ATP module from Figure 9.

Figure 11 lists a selection of optimizations that we proved cor-
rect using our implementation. For each optimization we list the
time it took to carry out PEC and the number of queries to the the-
orem prover. To be clear about our contribution compared to the
Rhodium system for automatically proving optimizations correct,
Figure 11 partitions the optimizations into three categories.

Category 1 : Optimizations that were also expressed and proved
correct in Rhodium, and whose PEC formulation is equivalent to
the Rhodium formulation.

Category 2 : Optimizations that could have been expressed and
proved correct in Rhodium, but our versions are much more gen-
eral than the Rhodium version, and also much easier to express. For
example, in the case of loop invariant code hoisting, PEC can prove
the correctness of hoisting loop-invariant branches or even entire
loops, while the Rhodium version could only hoist loop-invariant
assignments. Furthermore, these optimizations are much easier to
express in our PEC formulation because of our explicit support



for many-to-many rewrites. In contrast, implementing these opti-
mizations in Rhodium would require an expert to carefully craft
sequences of local statement rewrites that achieves the intended ef-
fect. For example, moving a statement in Rhodium requires insert-
ing a duplicate copy of the statement at the target location, and then
removing the original statement in a separate pass.

Category 3 : Optimizations that cannot be proved correct, or even
expressed, in Rhodium. Our support for many-to-many rewrite
rules makes it easy to express these optimizations, and PEC tech-
nique is general enough to handle their correctness proofs.

The trusted computing base for our system includes: (1) the
PEC checker, comprising 2,408 lines of OCaml code (2) the Sim-
plify automated theorem prover, a widely used and well tested the-
orem prover, and (3) the execution engine that will run the opti-
mizations. Within the execution engine, the trust can be further
subdivided into two components. The first component of the ex-
ecution engine must perform the syntactic pattern matching for
rewrite rules, and apply rewrite rules when they fire. This part
is always trusted. The second component of the execution engine
must perform program analyses to check each optimization’s side-
conditions in a way that guarantees their semantic meaning. Here
our system offers a choice. These analyses can either be trusted
and thus implemented inside the compiler using arbitrarily com-
plex analyses, or untrusted and implemented using a provably safe
analysis system like Rhodium.

8. Execution Engine
We implemented a prototype execution engine in 383 lines of
OCaml code that runs optimizations checked by PEC. Although
PEC can be applied to any intermediate representation for which
we can compute weakest preconditions, our prototype execution
engine transforms programs written in a C-like intermediate lan-
guage including arrays and function calls. Using this prototype, we
were able to run all the optimizations described in previous sec-
tions. Even though our execution engine is a prototype, it demon-
strates how our optimizations can be incorporated into a compiler,
and also shows that the optimizations we checked execute as ex-
pected.

Our execution engine is embodied in a function called Apply ,
which takes as input a program p, a transformation rule [P1 ⇒
P2 where φ], and a profitability heuristic ρ, and returns a trans-
formed program. The Apply function first uses pattern matching
to find all locations in the program p where the pattern P1 occurs.
Then for each match that is found, Apply evaluates the side condi-
tion φ to make sure that the match is valid. Our current prototype
checks side conditions conservatively using read/write sets. For ex-
ample, to guarantee that a statement s1 does not modify another
statement s2, we check that WriteSet(s1) ∩ ReadSet(s2) = ∅.

For each match that is found where the side condition holds,
Apply builds a substitution θ that records information about the
match: θ maps the free variables in P1 to concrete fragments of
p, and it also records the location where the match occurred in
p. Apply collects the resulting substitutions θ into a set Θ, and
then it calls the profitability heuristic ρ with Θ as a parameter. The
role of the profitability heuristic ρ is to select from the set Θ of
all substitutions that have been found (representing all the possi-
ble applications of the transformation rule) those substitutions that
it wants to apply. Because all the substitutions in Θ represent cor-
rect transformations, it does not matter which subset the profitabil-
ity heuristic chooses, and so the profitability heuristic can perform
arbitrary computation without being trusted. The above approach
to profitability heuristic uses the generate-and-test approach pre-
sented in the Cobalt system [14]. Alternatively, an execution en-
gine could also employ the more demand-driven approach used in

function SwPipe(p) :=

let p′ := Apply(p, t1, ρsw)

if (p′ = p) then p′ else SwPipe(Apply(p′, t2, λx.x))

Figure 12. Implementation of Software Pipelining using Apply .

the Rhodium system [15], where side conditions directly refer to
profitability facts, thus constraining which matches are explored.

Once the profitability heuristic has selected the set of substi-
tutions it wants to apply, the Apply function performs the corre-
sponding transformations. If the profitability heuristic returns sub-
stitutions that overlap in the program fragments they match, then
the Apply function picks an order to apply the substitutions in, and
only applies a substitution θ if no previously applied substitution
has transformed elements mentioned in θ.

As an example, Figure 12 shows a function SwPipe that uses
Apply to perform software pipelining. We use t1 to represent the
first part of software pipelining (the transformation from Figure 2),
and t2 to represent the second part (the transformation from Fig-
ure 3). The SwPipe function uses Apply to repeatedly apply t1 and
t2. The software pipelining profitability heuristic ρsw is applied af-
ter t1 has run. In our prototype, we have chosen to implement ρsw

by selecting matches that reduce the number of dependencies be-
tween instructions in loop bodies. Once t1 has fired, we need to
apply t2 on the result before doing another iteration of software
pipelining. As a result, the profitability heuristic for t2 is the iden-
tity function, which simply selects all the matches.

9. Related work

Translation Validation. Our approach is heavily inspired by the
work that has been done on translation validation [20, 19, 22, 6, 11,
12]. However, unlike previous translation validation approaches,
our equivalence checking algorithm addresses the challenge of rea-
soning about statements that are not fully specified. As a result, our
approach is a generalization of previous translation validation tech-
niques that allows optimizations to be proved correct once and for
all. Furthermore, because our PEC approach can handle concrete
statements as well as parameterized statements, it subsumes many
of the previous approaches to translation validation, for example
the relation approach of Necula [19] and the permute approach of
Zuck et al. [6, 32].

Proving loop optimizations correct. Our approach to reasoning
about loop reordering transformations by having a single canonical
representation for all these transformations is similar to the trans-
lation validation work of Zuck et al. [6] and the legality check ap-
proach of Kelly et al. [9]. However, both these approaches perform
runtime validation of concrete programs instead of once and for all
reasoning about parameterized programs.

Automated correctness checking of optimizations. As with our
PEC algorithm, the Cobalt [14] and Rhodium [15] systems are able
to check the correctness of optimizations once and for all. However,
Cobalt and Rhodium only support rewrite rules that transform a sin-
gle statement to another statement, thus limiting the kinds of opti-
mizations they can express and prove correct. Our PEC approach
can handle complex many-to-many rewrite rules explicitly, allow-
ing it to prove many more optimizations correct.

Human-assisted correctness checking of optimizations. A sig-
nificant amount of work has been done on manually proving opti-
mizations correct, including abstract interpretation [3, 4], the work
on the VLISP compiler [7], Kleene algebra with tests [10], man-
ual proofs of correctness for optimizations expressed in temporal



logic [25, 13], and manual proofs of correctness based on par-
tial equivalence relations [1]. Analyses and transformations have
also been proven correct mechanically, but not automatically: the
soundness proof is performed with an interactive theorem prover
that requires guidance from the user. For example, Young [31] has
proven a code generator correct using the Boyer-Moore theorem
prover enhanced with an interactive interface [8]. As another ex-
ample, Cachera et al. [2] show how to specify static analyses and
prove them correct in constructive logic using the Coq proof as-
sistant. Via the Curry-Howard isomorphism, an implementation of
the static analysis algorithm can then be extracted from the proof
of correctness. Leroy’s Comcert project [16] has also used a similar
technique to manually develop a semantics preserving, optimizing
compiler for a large subset of C. The Comcert compiler provides
an end-to-end correctness guarantee, and does not just focus on
optimizations, as we do in our approach. Tristan et al. has also
proved that certain translation validators are correct once and for
all, but here again by implementing the proof manually [27, 28]. In
all these cases, however, the proof requires help from the user. In
contrast to these approaches, our proof strategy is fully automated
but trusts that the side conditions are computed correctly when the
compiler executes.

Languages for expressing optimizations. The idea of analyz-
ing optimizations written in a specialized language was intro-
duced by Whitfield and Soffa with the Gospel language [29]. Many
other frameworks and languages have been proposed for specify-
ing dataflow analyses and transformations, including Sharlit [26],
System-Z [30], languages based on regular path queries [24], and
temporal logic [25, 13]. None of these approaches addresses auto-
mated correctness checking of the specified optimizations.

10. Conclusion
We developed and implemented Parameterized Equivalence
Checking (PEC), a technique for automatically proving optimiza-
tions correct once and for all. PEC works by proving transforma-
tions correct on parameterized programs, thus generalizing previ-
ous translation validation techniques and adapting them to provide
once and for all correctness proofs. Furthermore, our use of ex-
pressive many-to-many rewrite rules and a robust proof technique
enables PEC to automatically prove correct optimizations that have
been difficult or impossible to prove in previous systems.
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