
Procedure Hopping: a Low Overhead Solution to Mitigate

Variability in Shared-L1 Processor Clusters

Abbas Rahimi†, Luca Benini‡, Rajesh K. Gupta†
†Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA

 ‡Dipartimento di Elettronica, Informatica e Sistemistica, Università di Bologna, Bologna, Italy
abbas@cs.ucsd.edu, luca.benini@unibo.it, gupta@cs.ucsd.edu

ABSTRACT
Variation in performance and power across manufactured parts

and their operating conditions is a well-known issue in advanced

CMOS processes. This paper proposes a resilient HW/SW archi-

tecture for shared-L1 processor clusters to combat both static and

dynamic variations. We first introduce the notion of procedure-

level vulnerability (PLV) to expose fast dynamic voltage variation

and its effects to the software stack for use in runtime compensa-

tion. To assess PLV, we quantify the effect of full operating con-

ditions on the dynamic voltage variation of a post-layout proces-

sor in 45nm TSMC technology. Based on our analysis, PLV

shows a range of 18mV−63mV inter-corner variation among the

maximum voltage droop of procedures. To exploit this variation

we propose a low-cost procedure hopping technique within the

processor clusters, utilizing compile time characterized metadata

related to PLV. Our results show that procedure hopping avoids

critical voltage droops during the execution of all procedures

while incurring less than 1% latency penalty.

Categories and Subject Descriptors

C.4 [PERFORMANCE OF SYSTEMS]: Design studies; Relia-

bility, availability, and serviceability

General Terms: Design, Reliability, Performance

Keywords: Variability, Dynamic IR-drop, Many-core

1. INTRODUCTION
Transistor miniaturization and increasing density continue to in-

crease variability in transistor performance [1], and increasing gap

between average and peak power [2]. These variations arise from

different physical sources: (i) static inherent process parameter

variations due to random dopant fluctuations and sub-wavelength

lithography as well as device and interconnect degradation due to

aging; (ii) dynamic environmental stresses such as temperature

fluctuations and voltage droops that result from large current tran-

sients across the network power delivery system, commonly re-

ferred to as IR-drop. These issues are expected to worsen with

technology scaling [3]. Designers commonly use conservative

guard-bands for the operating frequency and voltage to handle

these variations that significantly add to the cost and contribute to

loss of energy efficiency.

Given the close relationship between power and temperature, and

the increased importance of variability in the future, treatment of

variability during pre-silicon and post-silicon design stages is

crucially important. Indeed, several recent efforts have focused on

measures to mitigate variability through innovations in design.

On-die sensor circuits [4] have been widely used to detect pro-

cess, voltage, and temperature (PVT) variations coupled with

adaptive recovery methods leveraging CMOS knobs: voltage,

frequency, and body bias. The process parameter variability in-

formation has been exposed to a dynamic voltage and frequency

scaling (DVFS) controller that shifts workload from inefficient,

leaky processor to efficient, less leaky ones [5]. IBM POWER7

prevents timing errors by integrating multiple critical path moni-

tors (CPM) [4] per core to capture PVT variation, and employing

two cooperating feedback controllers: (i) tight coupling between

CPMs output and a phase-locked loop (PLL) enables DFS con-

troller to react very quickly to voltage droops; (ii) the second con-

troller dynamically adjusts the processor voltage (DVS) to achieve

a desired performance level on a longer time scale [6]. Moreover,

a dynamic fine-grain body biasing technique leveraging multiple

CPMs is introduced in [7].

Going further up on the hardware-software stack, a notion of in-

struction-level vulnerability to dynamic voltage and temperature

variations is defined to expose variation and its effects to the

software stack [8]. Furthermore, it has been shown how collabora-

tive design that encompasses microarchitecture and compiler can

lead to a cost-effective solution for fast voltage droop avoidance

in commodity processors [9]. A dynamic thread hopping scheme

in conjunction with DVFS is proposed to mitigate the within-die

variation across 80-core [10]. F. Paterna et. al. [11] propose a

runtime variability-aware workload distribution technique for

multimedia streaming applications running on parallel multipro-

cessor arrays. That platform has also been equipped against non-

uniform aging by an adaptive idleness distribution technique [12].

This paper makes three contributions. First, we introduce the no-

tion of procedure-level vulnerability (PLV) to capture the effects

of dynamic IR-drop. Using characterized PLV, we enable a soft-

ware preventive methods that build upon well-known hardware

detection/correction techniques for process variability and aging.

Second, we propose a low-cost runtime procedure hopping that

facilitates migration of procedures within a processor cluster,

utilizing compile time characterization (captured as metadata) of

PLV. Third, an accurate gate-level analysis flow which leverages

industrial design implementation tools and libraries to character-

ize IR-drop of individual procedures in the presence of variability

is developed. We demonstrate our approach on a tightly-coupled

shared-L1 multi-core cluster, representative of a large class of

multi-core architectures (e.g. GP-GPUs, programmable multime-

dia accelerators). Full post place-and-route (P&R) results in 45nm

TSMC technology confirm that the procedure hopping technique

avoids the critical IR-drop during the execution of all procedures

while incurring less than 1% latency penalty.

The rest of the paper is organized as follows. Section 2 surveys

prior work in this topic area. Section 3 describes the architecture

of the variation-tolerant shared-L1 processor clusters. The proce-

dure hopping technique is presented in Section 4. In Section 5, we

explain our methodology for the characterization of PLV to dy-

namic operating conditions. Section 6 details experimental results.

Finally, Section 7 concludes the paper.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

ISLPED’12, July 30–August 1, 2012, Redondo Beach, California, USA.

Copyright 2012 ACM 978-1-4503-1249-3/12/07...$10.00.

2. RELATED WORK
Core-level dynamic voltage scaling as well as discrete VDD-

hopping technique [13] has been widely used for multiprocessor

systems [10][14], due to the quadratic relation between energy

and voltage. Researchers have proposed the chip-wide voltage

scaling to slow down aging [15] and dynamic voltage scaling for

aging management [16]. Nevertheless, these techniques do not

consider the dynamic temperature fluctuation and fast IR-drops.

Different runtime compensation methods that can adapt to dynam-

ic supply voltage fluctuation have been proposed [9][17]-[21].

Although a direct link between voltage droop and processor activ-

ity has been provided [17][18], the temperature effects has not

been considered. Thus, a thermal-aware adaptive frequency throt-

tling method is proposed to combat voltage variation [19]. Since

supply voltage can change rapidly and voltage compensation

methods often require at least several clock cycles, a soft thresh-

old is considered on voltage monitor to trigger compensation in

advance [17][18], at the expense of frequent unnecessary com-

pensations. Other approaches characterize voltage emergencies

through processor activities [20], and problematic instruction

sequences [21][9]. An early predictor of an impending voltage

droop uses microarchitectural indicators, e.g. TLB/cache miss,

and pipeline flush, as signatures of a voltage emergency [20].

Nevertheless, [9][17]-[21] use a very “generic” variability models

on high-level architectural simulators which do not consider the

detail of physical processor implementation on variability. For

instance, the effect of fine-grain clock-gating on power as well as

accurate switching activity, and details of power supply network

(which simply modeled as a second-order linear system) have

been largely overlooked [18]-[21]. On the other hand, real resili-

ent silicon implementations either target a single-core [24], or

loosely coupled processors [6][10], and hence their approach

cannot fully exploit the possibility of low-cost procedure migrat-

ing from one core to another, for instance [10] has a migration

overhead of transferring 1280 flits (entire instruction and data

memory in one core) over a packet-switched router for threads

that have a runtime of 35K cycles. Moreover, these circuit tech-

niques suffer from power-hungry error recovery which is expen-

sive for a many core fabric. In contrast, our approach is applicable

to clusters of simple processors and exploits the opportunity given

by tightly coupled architecture to dynamically shift work from one

core to another with minimal overhead. Further progress in low-

cost software-assist techniques requires a highly-accurate design

time analysis on a physical implementation of cores with back-end

details on a proven silicon technology with variability models and

characterized operating conditions given by the semiconductor

fabrication process. We believe a combination of design time and

runtime is essential to achieve best results, considering only one

of them leads to unacceptable overhead.

3. VARIATION-TOLERANT PROCESSOR

CLUSTERS ARCHITECTURE
In this section, we describe the architectural detail of proposed

variation-tolerant processing cluster. These clusters are the essen-

tial parallel components of many core fabrics, e.g., NVIDIA Fer-

mi [22] features 512 CUDA processors organized into 16 groups

of processing cluster. In our implementation, each cluster consists

of sixteen 32-bit in-order RISC cores compliant with the SPARC

V8 architecture, an intra-cluster shared level-one instruction cache

(shared-L1 I$) [23], an on-chip tightly coupled data memory

(TCDM), two fast logarithmic interconnections [25] for both

... I$Bi-1I$B0

Log. Interc.

Core15

V
A

-V
D

D
-h

o
p

p
in

g

... TCDMBj-1TCDMB0

Log. Interc.

Low VDD

Typical VDD

High VDD

D
F

S...

f+
1

8
0

°
f+

1
8

0
°

f

CPM

Level ShiftersLevel Shifters

Level ShiftersLevel Shifters

SHM

PSS

Core0

V
A

-V
D

D
-h

o
p

p
in

g

CPM

PSS

Figure 1. Variation-tolerant processor cluster.

instruction and data sides, and a hardware synchronization han-

dler module (SHM). The shared-L1 I$ for the MIMD cluster can

achieve better performance, up to 60%, than the private I$ per

core [23]. On the data side, a multi-ported, multi-banked, level-

one TCDM is directly connected to the interconnect. The number

of memory ports is equal to the number of banks to have concur-

rent access to different memory locations. The logarithmic inter-

connection is composed of mesh-of-trees networks to support

single cycle communication between processors and memories in

L1-coupled processor clusters [25]. When a read/write request is

brought to the memory interface, the data is available on the nega-

tive edge of the same clock cycle, leading to two clock cycles

latency for a conflict-free TCDM access. The SHM acts as an

extra slave device of the logarithmic interconnect to coordinate

and synchronize cores for accessing shared data on TCDM [23].

All components of the cluster work with the same frequency

(memories with a 180° phase shift) decided by DFS, while only

the voltage of cores is isolated by the fast level shifters thus ena-

bling core-level dynamic VDD-hopping [13]. The VDD-hopping

uses three voltages provided by external DC-DC converters (no

need of on-chip inductor and charge pump) to control the local

voltage of the core based on the core's delay variation. To hop

between three supply voltages, a device called power supply se-

lector (PSS) is necessary. The VDD-hopping utilizes an efficient

voltage transition which allows changing the supply voltage fol-

lowing a controlled ramp, limiting wide current variations, avoid-

ing any supply voltage under- or over-shoot and current flowing

from one source to another [13]. Silicon results of a 65nm test-

chip indicate that the core does not need to be stopped during

VDD-hopping thanks to smooth, and fast voltage transitions (less

than 100ns), with no under-shoot or over-shoot [26]. The hopping

unit and its power switches are fully integrated and are 20× small-

er than the integrated buck-boost DC-DC converter [26]. As

shown in Figure 1, the level shifter standard cells are utilized in

the back-end with a fine-grain multi-VDD design flow; each the

high-to-low/low-to-high level shifter imposes only 12ps/42ps

delay [27] (262nW/43nW average leakage power) for a load of

fan-out-of-4, thus enabling single-cycle communications between

cores and TCDM/shared-L1 I$.

3.1 Variation-Aware VDD-Hopping
To observe the effect of process parameters variation on frequen-

cy of individual cores within a cluster, we have accurately ana-

lyzed how critical paths of each core are affected, considering the

back-end details implementation of cores. Each core has been

optimized during synthesis and P&R individually with a target

frequency constraint of 830MHz, then a bottom-up synthesis ap-

proach is leveraged to form the physical implementation of the

cluster. After parasitic extraction, in the sign-off stage, the process

parameters are varied based on die-to-die and within-die charac-

terized process parameters variations of 45nm TSMC models,

derived from the first-level process created by principal compo-

nent analysis. These standard industrial libraries and design pro-

cess are supported by the state-of-the art commercial tools [28],

thus the calculated cores' frequency accurately reflect the true

results obtained in silicon. The maximum frequency variation of

every core under different operating voltages is shown in Figure

2. Within a cluster, each core’s maximum frequency varies signif-

icantly due to increasing within-die variations. For instance, at

0.81V, three cores (f4, f8, f9) of out of 16-core cannot meet the

design time target frequency of 830MHz.

To cope with this frequency variation problem there are three

solutions: (i) limiting the frequency of cluster by the slowest core

(f8=820MHz); (ii) disabling the slowest cores and clocking the

cluster with the next slowest core (f4=826MHz); (iii) running each

core at its maximum frequency independently. All these solutions

impose non-negligible performance penalty; the first and second

solutions directly diminish the throughput of cluster, and the last

solution needs extra latency for synchronization of cores with

different frequencies. Synchronization across multiple frequency

islands increases the latency of interconnection which its perfor-

mance impact can be as high as the cache miss.

On the other hand, we consider a core-level VDD-hopping [13] for

tuning the voltage of each core individually to compensate the

impact of process variation. For instance, Figure 2 shows that all

cores of the same cluster meet the target frequency of 830MHz

when a higher VDD (0.99V) is applied. Therefore, every core can

have its own voltage domain, while all cores can work with the

target frequency utilizing the fast level shifters. The critical paths

delay of every core are measured in real-time by the less intrusive

and low-overhead CPMs [4], hence the variation-aware VDD-

hopping (VA-VDD-hopping) can accordingly tune the cores' volt-

age periodically at arbitrary post-silicon stages. It mitigates both

process variation and even aging slows down. Consequently, the

cores which are fabricated on a fast piece of silicon will work on a

lower voltage than the boosted “high VDD” voltage; this not only

lowers their power but delays their aging. On the contrary, slow

cores will supply at higher voltages to be able to meet the target

frequency. As shown in Figure 2, the VA-VDD-hopping elevates

the voltage of slow cores (f4, f8, f9) to 0.99V, while the rest of

cores are supplying at 0.81V, therefore enabling the whole cluster

to clock at the target frequency of 830MHz. Note that the VA-

VDD-hopping technique mitigates the within-cluster delay varia-

tions, but imposes voltage supply changes at the core-level that

can affect core's aging. Therefore, to extend service life of the

slow cores the ratio of stress to recovery time can be changed

using core activity duty cycling techniques [12].

VDD = 0.81V VDD = 0.99V VA-VDD-Hopping=(0.81V 0.99V,)

f0

862

f1

909

f2

870

f3

847

f4

826

f5

855

f6

877

f7

893

f8

820

f9

826

f10

909

f11

847

f12

901

f13

917

f14

847

f15

901

f0

862

f1

909

f2

870

f3

847

f4

1370

f5

855

f6

877

f7

893

f8

1370

f9

1370

f10

909

f11

847

f12

901

f13

917

f14

847

f15

901

f0

1408

f1

1389

f2

1408

f3

1370

f4

1370

f5

1408

f6

1408

f7

1408

f8

1370

f9

1370

f10

1389

f11

1370

f12

1408

f13

1408

f14

1389

f15

1389

Figure 2. Frequency (MHz) variation of a 16-core cluster due

to the process parameters variations under different voltages.

4. PROCEDURE HOPPING IN PRESENCE

OF FAST DYNAMIC IR-DROP
In the previous section, we have shown that the variability-

affected cluster can combat delay variation caused by the process

parameter variations and aging, leveraging the real-time observers

and voltage as the control knob. CPMs observe the available slack

on paths, and VA-VDD-hopping controls the voltage accordingly,

this detection/correction control loop is a well-suited for those

variations that: (i) have a slow time constant since compensation

requires several clock cycles; (ii) contain low-frequency compo-

nents to avoid the frequent cost of rollback and calibration. On the

other hand, fast dynamic variations, like IR-drop, that contains

high-frequency component cannot be countered by a reactive

detection/correction loop. They need to be anticipated and pre-

vented.

For this type of variations, we propose a technique consisting of

two major phases: design time characterization of metadata related

to PLV, and runtime preventive procedure hopping. During char-

acterization, the probability of voltage droop/rise versus various

voltage (V) and temperature (T) is characterized at the level of

procedures, where the problematic sequences of instructions

[9][21] exist. Therefore, the PLV is calculated for every procedure

on different combinations of (V,T) of the core, then the metadata

is generated as the result. The characterized metadata is attached

to each procedure at the compile time, to be able to use for

runtime decisions about finding the best location to run the pro-

cedure among the available (V,T)-islands within a cluster.

During runtime, the core can evaluate the PLV of every procedure

just looking at the characterized metadata, and at the same time

monitoring its current (V,T) using CPMs. If the calculated PLV is

greater than a predefined threshold (PLV_threshold), this means

that running procedure on the original core (caller) would likely

cause critical IR-drops, thus the procedure hops to another core

(callee) where its (V,T) is suitable for the procedure execution. As

discussed in the next subsection, procedure hopping can be done

remarkably fast and proactively enough thanks to the tightly cou-

pled shared resources within a cluster.

4.1 Supporting Intra-Cluster Procedure Hopping
In this subsection, we describe the architectural HW/SW design to

support the procedure hopping within a cluster. The goal is to

facilitate fast and proactive migration of procedures from a caller

core to the rest of cores, without special compiler support, mini-

mal impact on the normal execution, and reasonable memory

overhead. Figure 3 shows the HW/SW interactions, and steps of

procedure hopping of the cluster. It is shown that accessing both

data and instruction is facilitated by shared TCDM and L1 I$. The

shared TCDM has four regions: (i) shared local: maintains varia-

bles explicitly defined to be shared at compile time; (ii) shared

stack: maintains the parameters for passing among cores; (iii)

stacks: region is defined to maintain the normal stack of all 16

cores; (iv) heap: is used for dynamically allocated structures.

For every procedure e.g. ProcX, two variation-aware procedures,

ProcX@Caller and ProcX@Callee, are considered to enable

runtime accesses to the characterized metadata of ProcX in the

caller and callee cores respectively. The only compiler transfor-

mation is to transform “call ProcX” to “call ProcX@Caller”, as

shown in the code of the caller core in Figure 3. Therefore, the

ProcX@Caller will first run on behalf of ProcX to decide whether

current (V,T) of the caller core is suitable for running ProcX or

not, utilizing the metadata and reading the operating condition

monitors to calculate PLV. If PLV is less than/equal to the

PLV_threshold, then “call ProcX” will be executed; otherwise the

procedure hopping will be applied to trigger migration of ProcX to

a favor core. Once a procedure hops from the caller core to a

callee core, its code is easily accessible via the shared-L1 I$

(without paying the penalty of filling a private cache), but its pa-

rameters also needed to be visible for the callee core. Therefore, a

shared stack layout is created on the stack region of TCDM which

is accessible via a shared stack pointer (SSP). This 36-byte shared

stack layout covers the eight out registers of SPARC for passing

six 32-bit parameters (%o0-%o5), a pointer to extra parameters

(%o6), a return address (%o7) as well as a pointer to the return

data structure. The caller core needs to copy-out the out registers

and extra parameters (if available) to TCDM before migration of

procedure, and then copy-in the return value or structure form

TCDM to the registers after finishing execution of the migrated

procedure. In our implementation, we assume that procedures do

not have any global variables, and all inter-procedure communica-

tions are done through parameters passing; otherwise the caller

core needs to copy-out/in all context registers (32 current registers

window) to/from TCDM.

To enable the callee core to access to the data and code of a mi-

grated procedure, a procedure hopping information table (PHIT)

is considered in the shared local area of TCDM. This table simply

keeps the information of a migrated procedure, including its SSP,

address, and status. Every core can have up to eight nested proce-

dure calls (the window pointer is synthesized as a 3-bit register),

and only one of them can migrate, since the in-order core is a

single thread core, and needs to wait for returning the result of the

migrated procedure. Therefore, the 192-byte PHIT has an entry

for every core which keeps the following information for a mi-

grated ProcX: the shared stack pointer (SSPX), the address of

ProcX@Callee (ADDRX), status of ProcX (STX) ={empty, waiting,

running, done}.

As shown in the code of the caller core in Figure 3, after filling

the shared stack and PHIT, the core does a broadcast_req to

inform the rest of cores about a waiting procedure for service.

This broadcast triggers an interrupt for all cores except the caller

core, as potential callee candidates, which can service the waiting

procedure based on their programmable priorities− the core can

be programmed to ignore this interrupt or trigger it only when the

core is idle. In the corresponding interrupt service routine (ISR),

the callee core resumes its normal execution, and then walks

through PHIT circularly, starting from its neighbor core for mini-

mizing contention, picks up a waiting procedure to assess it. For

instance, if the callee core picks up the waiting ProcX for the ser-

vice, it will jump to the ADDRX, the address of ProcX@Callee.

The philosophy of ProcX@Callee is like ProcX@Caller, it essen-

é
ProcX@Callee:
if (calculate_PLVÒ PLV_threshold)

set_statusX_PHIT = running
load_contex¶m_from_SSPX

set_all_param&pointers
call ProcX

store_contex_to_SSPX

set_statusX_PHIT = done
send_broadcast_ack

else
resume_normal_execution

é

Broadcast_req_ISR:
ProcX@Callee = search_in_PHIT

call ProcX@Callee

é
call ProcX //conventional compile
Call ProcX@Caller //VA-compile

é
ProcX@Caller:

If (calculate_PLVÒ PLV_threshold)
call ProcX

else

create_shared_stack_layout
set_PHIT_for_ProcX

send_broadcast_req
set_timer
wait_on_ack_or_timer

é
Broadcast_ack_ISR:

if (statusX_PHIT == done)
load_context&return_from_SSPX

Shared

Local

Heap

Shared

Stack

ProcX
ProcX

@Callee

PHIT

O
p

e
ra

tin
g

 C
o

n
. M

o
n

it.
In

te
rru

p
t C

o
n
t.

O
p

e
ra

ti
n

g
 C

o
n

. M
o

n
it
.

In
te

rr
u
p

t
C

o
n
t.

TCDM

S
h

a
re

d

L
1
 -I$

Callee Corek Caller Corei

ProcX

@Caller
éé

é

Stacks

Figure 3. HW/SW collaborative architecture to support intra-

cluster procedure hopping.

tially enables the callee core to assess PLV of the ProcX based on

the current operating condition of the callee core. If PLV is less

than/equal to the threshold, then the callee core will access to the

code and data of ProcX for executing on behalf of the caller core;

otherwise the callee will resume its normal execution. Particular-

ly, the callee core changes the STX at PHIT from waiting to run-

ning, thus the rest of cores will not pick ProcX up for the assess-

ment− SHM device coordinates multiple concurrent accesses to

PHIT. The callee core then copies-in the procedure's parameters

from the shared stack via SSPX, and calls ProcX for its execution.

After executing the procedure, the core copies-out the return value

from register to the shared stack, sets the corresponding pointer to

the return data structure (if any), sets the STX to done, and does a

broadcast_ack to inform the caller about finishing execution of

ProcX.

The caller core, in the corresponding interrupt service routine of

broadcast_ack, checks the STX, if it is equal to done, it then cop-

ies-in the return value and structure (if any) from the shared stack

to the caller core's registers. In the time between sending a broad-

cast_req until receiving a broadcast_ack, the caller core can ser-

vice another waiting procedure available on PHIT, or can switch

to an idle mode. If the caller core does not get any ack response

after a programmable timer value (e.g. 100μs which is long

enough to executing a procedure), this means that there is no bet-

ter (V,T)-island (no favor core) within the cluster to prevent the

voltage emergency during execution of the procedure. Therefore,

the caller core sends a request to cluster's DFS controller to de-

crease the frequency of the whole cluster, thus lower the power

density and temperature.

5. CHARACTERIZATION OF PLV TO DY-

NAMIC OPERATING CONDITIONS
In this section, we demonstrate an advanced CAD flow and meth-

odology to address variation awareness for characterization of

PLV to dynamic IR-drop (we separately consider both voltage

droops on VDD and voltage rises on VSS power domains), under a

full range of operating conditions. It consists of two stages as

shown in Figure 4: (i) the design time stage which accurately ana-

lyzes the dynamic voltage droops/rises for individual procedures

under full operating conditions; (ii) the compile time stage which

generates PLV metadata and corresponding variation-aware pro-

cedures. Finally, the cluster benefits from the characterized PLV

at the runtime stage.

Each core of the cluster is an open-source 32-bit in-order RISC

LEON3 [29] processor which is synthesized with the normal VTH

cells of 45nm TSMC technology, the general purpose process.

The back-end optimization is performed using Synopsys IC Com-

piler, and then the finalized net-list and parasitics are extracted for

accurate power analysis. To generate the accurate gate-level

switching activity factor for the vector-based power analysis, the

procedure is simulated on top of the back-end extracted net-list

with timing back-annotation using Mentor Graphics ModelSim.

The instantaneous power of the procedure is then analyzed under

four TSMC operating conditions [27] using Synopsys PrimeTime.

Providing the signoff corner-based instantaneous power as well as

the switching activity factor enables Synopsys PrimeRail for a

fine-grain, time-based rail analysis of all resistive, capacitive and

inductive components of the post-P&R processor. Consequently,

the inter-corner dynamic voltage droop/rise of the power rails is

analyzed as the output of the design time stage.

The quantification of the PLVX (PLV of ProcX) to dynamic IR-

drops defined in (1), where NX is the total number of clock cycles

which takes to execute ProcX, and VolEmergi indicates whether

there is at least a voltage emergency at the clock cyclei or not. The

voltage fluctuations of greater than 4% are viewed as voltage

emergencies [18][19][21] that can result in a malfunction within

the processor, therefore the voltage droops/rises on VDD/VSS pow-

er rails are sampled k times during one clock cycle. The average

signal activity is 70ps, so the k=15 for the target cycle time

(1.2ns), while [18][19][21] sampled a second-order linear system

as a model of power supply only once per cycle. The VolEmergi

is one if the maximum sampled voltage droop/rise is greater than

4% of VDD during the clock cyclei. In other words, PLVX defines

as the total number of cycles that have at least one voltage emer-

gency over the total cycles for the ProcX. Intuitively, if ProcX runs

without any voltage emergency, PLVX is zero; on the other hand,

PLVX is one if ProcX faces at least one voltage emergency in every

cycle.

DD

1

1
VolEmerg

4 V
If Max{drop(), rise() =1,...,k} VolEmerg 100
otherwise

Nx

x i
x

i

i

PLV
N

1 t t t

0

=

ë
î
=ì
î
í

=

³
²

ä
 (1)

PLVX is characterized for the assigned voltages of VA-VDD-

hopping to various cores, {0.81V, 0.90V, 0.99V} representing

{fast, typical, slow} cores on a variability-affected cluster. At

design time, the slow cores and fast cores are distinguished based

on their maximum frequency distribution as described in Section

3.1, then their voltage is tuned accordingly to meet the target clus-

ter frequency. At compile time, the characterized PLV metadata of

every ProcX is attached to the two variation-aware procedures,

ProcX@Caller and ProcX@Callee, to be able to runtime access to

the metadata on the caller and callee cores respectively. During

runtime, the discretized (V,T) operating conditions are reported

by CPMs thus enabling ProcX@Caller/Callee to point to the cor-

responding characterized PLV metadata to assess the vulnerability

of ProcX at the current (V,T).

Open-source

LEON3

Design Compiler

IC Compiler

PrimeTime PX

ModelSim

Vsim

VHDL Timing

constraints

Verilog

net-list

Verilog

net-list

Parasitics

Switching

activity

ProcX

Power @(Vi,Tj)

Dynamic

Voltage

droop/rise

@(Vi,Tj)

Object

code

PLV

characterized

metadata

For ProcX@Caller :

Read current (V,T) sensors of Corei

Read characterized metadata for ProcX

If PLVX > PLV_threshold

Invoke Procedure Hopping (ProcX@Callee)

VA-Proc generation:
ProcX/ProcX@Caller/

ProcX@Callee

Generating

metadata

Operating

condition

(V,T) monitor

Design time Compile time

Runtime

L
E

O
N

3
:

C
o

re
i

(0.81V,

-40ęC)

(0.90V,

25ęC)

(0.99V,

125ęC)

TSMC

45nm LIBs

P
rim

e
R

a
il

S
D

F

(0.81V,

125ęC)

Source

code

(V,T)

E
x

e
c

u
ta

b
le

s

BCC Compiler

VA-Proceduresô

source code

Figure 4. Methodology for characterization of PLV.

6. EXPERIMENTAL RESULTS
This section shows the experimental results for embedded micro-

processor AutoBench suite of benchmarks [30] characterized at

the design time flow of Figure 4. This section also evaluates the

effectiveness of the procedure hopping technique to avoid voltage

emergencies, and quantifies its latency overhead as well as the

voltage droop/rise during the runtime stage. Every benchmark is a

program consists of a “run” procedure for its major computation

which is selected for characterization1 and can be run on every

core− the cluster is a multi-programmed environment. The inter-

corner and intra-corner variations in the peak power of procedures

are shown in Figure 5. The corner with higher (V,T) has higher

power density which imposes higher peak power. It is shown that

the maximum inter-corner peak power variation is 3.5× for FIR,

while the maximum of 1.28× intra-corner peak power variation

occurs between IFFT and tblook procedures at (0.81V,125°C).

Furthermore, the maximum of 4.1× peak power variation is ob-

served across corners and procedures, a2time at (0.81V,-40°C),

and IFFT at (0.99V,125°C). We should point out that LEON3 is a

simple in-order RISC processor, thus for fast and complex cores

where the stress on the power grid is much higher [2], we expect

to see even higher power variation.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

P
e
a
k
 p

o
w

e
r

(W
)

(0.81V, -40°C) (0.81V, 125°C) (0.90V, 25°C) (0.99V, 125°C)

Figure 5. Intra-procedure peak power variation.

Figure 6. Voltage droop of FIR across corners: (0.99V,125°C),

(0.90V,25°C), (0.81V,125°C), (0.81V,-40°C), left to right.

Increasing the (V,T) increases the power density as well as the

peak power, consequently the power network of the core highly

experiences the voltage emergencies in the high-power corner.

The voltage droops of running FIR on the same core but various

operating corners are shown in Figure 6. The core at the high-

power corner (0.99V,125°C) faces the maximum voltage droop of

44mV and 41mV as the average of top-100 dynamic voltage

droops, which are greater than 4% of VDD (990mV), thus these

voltage droops are considered as the voltage emergencies. As

opposed to the high-power corner (0.99V,125°C), FIR does not

face any voltage emergency at the corners with voltages of

0.90V/0.81V thanks to their lower power densities. The core has

various power densities across the corners of Figure 6 (left to

right): 0.66μW/μm2, 0.21μW/μm2, 0.18μW/μm2, 0.16μW/μm2.

Figure 7 illustrates the maximum voltage droop/rise that occurs

during the execution of the procedures under the four character-

ized operating conditions. All procedures running at cores with

0.81V have the maximum voltage droop/rise less than 4% of VDD.

Increasing the power density by switching to (0.90V,25°C) causes

only four procedures (IFFT, IDCT, matrix, ttsprk) to face the

voltage emergencies. At the highest power corner, (0.99V,125°C),

most of the procedures except tblook will face either voltage

1 PLV_threshold is set at zero, since the procedures are not inherently

resilient to any timing error and even a single IR-drop may cause a

wrong result.

droop or voltage rise greater than 4% of VDD. These results show

that the procedure hopping technique can avoid the voltage emer-

gency for all procedures by hopping them form a high-voltage

(0.99V) core to a low-voltage (0.81V) core. Experimental results

from the layout of variability-affected cluster, which are presented

in Section 3.1, show that 13 low-power cores lie within a cluster

of 16-core, thus providing enough callee cores to service the mi-

grated procedures.

0

1

2

3

4

5

6

7

8

M
a
x
 v

o
lt

a
g

e
 d

ro
o

p
 (

%
)

(0.81V, -40°C) (0.81V, 125°C) (0.90V, 25°C) (0.99V, 125°C)

0

1

2

3

4

5

6

7

8

M
a
x
 v

o
lt

a
g

e
 r

is
e
 (

%
)

(0.81V, -40°C) (0.81V, 125°C) (0.90V, 25°C) (0.99V, 125°C)

Figure 7. Percentage of the max voltage droop (top), and rise

(bottom) across various corners and procedures.

6.1 Cost of Procedure Hopping

Table 1 lists the latency overhead of involving the procedure hop-

ping both in the caller and the callee cores. The total roundtrip

overhead of the hopping a procedure from the caller core and

returning the results from the callee core is 793 cycles; this is less

than 1% of the total cycles needed to execute any of the character-

ized procedures in [30], while [10] has at least a migration over-

head of transferring 1280 flits only to transfer the instructions and

data from one core to another. In particular, if a procedure has a

runtime of 35K cycles, the amortized cost is only 2% and 0.2%

latency penalty, in case of hopping procedure to another core, or

keep running procedure on the same core respectively. This is

accomplished through the advantage of shared-L1 I$ and TCDM

that eliminates the penalty of filling a private storage.

Moreover, during the procedure hopping no voltage emergency

can occur even at (0.99V,125°C), neither in the caller nor the

callee core, since the copy-in/out parameters from/to regis-

ters/TCDM does not cause any burst of activity. Consequently,

the procedure hopping guarantees the voltage emergency-free

migration of all procedures, fast and proactively enough.

Table 1. Latency overhead and IR-drops of procedure hopping
Caller

hopping

Caller

not hopping

Callee

service

Callee

no service

Latency 218 cycles 88 cycles 575 cycles 342 cycles

Max droop 1.3% 0.6% 2.9% 1.8%

7. CONCLUSION
The notion of procedure-level vulnerability (PLV) to fast dynamic

voltage variation is defined. Based on PLV metadata, a fully-

software low-cost procedure hopping technique is proposed which

facilitates fast and proactive migration of procedures within a

shared-L1 processor cluster. Full post-P&R results in 45nm

TSMC technology confirms that the procedure hopping avoids the

voltage emergency across a variability-affected cluster, while

imposing only an amortized cost of less than 1% latency for any

of the characterized embedded procedures. Furthermore, the effec-

tiveness of the variation-aware VDD-hopping technique to combat

intra-cluster static variation has been demonstrated.

8. ACKNOWLEDGMENTS
This research was supported by NSF Variability Expeditions

Award CCF-1029783, and Virtical GA n. 288574.

9. REFERENCES
[1] S. Ghosh, et al., “Parameter Variation Tolerance and Error Resiliency: New Design Para-

digm for the Nanoscale Era,” Proc. IEEE, Vol.98, No.10, pp.1718-1751, Oct. 2010.

[2] C. Isci, et al., “An Analysis of Efficient Multi-Core Global Power Management Policies:

Maximizing Performance for a Given Power Budget,” Proc. MICRO, pp.347-358, 2006.

[3] ITRS [Online]. Available: http://public.itrs.net

[4] A. Drake, et al., “A Distributed Critical-Path Timing Monitor for a 65nm High-Performance

Microprocessor,” Proc. ISSCC, pp. 398-399, 2007.

[5] S. Herbert, et al., “Exploiting Process Variability in Voltage/Frequency Control,” IEEE

Trans. on Very Large Scale Integration (VLSI) Systems, 2011.

[6] C. R. Lefurgy, et al., “Active Management of Timing Guardband to Save Energy in POW-

ER7,” Proc. MICRO, 2011.

[7] R. Teodorescu, et al., “Mitigating Parameter Variation with Dynamic Fine-Grain Body

Biasing,” Proc. MICRO, pp. 27-42, 2007.

[8] A. Rahimi, et al., “Analysis of Instruction-level Vulnerability to Dynamic Voltage and

Temperature Variations,” Proc. DATE, pp.1102-1105, 2012.

[9] V.J. Reddi, et al., “Resilient Architectures via Collaborative Design: Maximizing Commodity

Processor Performance in the Presence of Variations,” IEEE Trans. on Computer-Aided De-

sign of Integrated Circuits and Systems, Vol.30, No.10, pp.1429-1445, Oct. 2011.

[10] S. Dighe, et al., “Within-Die Variation-Aware Dynamic-Voltage-Frequency-Scaling With

Optimal Core Allocation and Thread Hopping for the 80-Core TeraFLOPS Processor,”

IEEE J. of Solid-State Circuits, Vol.46, No.1, pp. 184-193, Jan. 2011.

[11] F. Paterna, et al., “Variability-Aware Task Allocation for Energy-Efficient Quality of Service

Provisioning in Embedded Streaming Multimedia Applications,” IEEE Trans. on Computers,

2011.

[12] F. Paterna, et al., “Adaptive Idleness Distribution for Non-Uniform Aging Tolerance in

MultiProcessor Systems-on-Chip,” Proc. DATE, pp. 906-909, 2009.

[13] S. Miermont, et al., “A power supply selector for energy- and area-efficient local dynamic

voltage scaling,” Proc. PATMOS, 2007.

[14] A. Rahimi, et al., “History-Based Dynamic Voltage Scaling with Few Number of Voltage

Modes for GALS NoC,” Proc. FutureTech, 2010.

[15] A. Tiwari, et al., “Facelift: Hiding and Slowing Down Aging in Multicores,” Proc. MICRO,

pp.129-140, 2008.

[16] U.R. Karpuzcu, et al., “The BubbleWrap many-core: Popping cores for sequential accelera-

tion,” Proc. MICRO, pp.447-458, 2009.

[17] E. Grochowski, et al., “Microarchitectural Simulation and Control of di/dt-induced Power

Supply Voltage Variation,” Proc. HPCA, pp. 7-16, 2002.

[18] R. Joseph, et al., “Control Techniques to Eliminate Voltage Emergencies in High-

Performance Processors,” Proc. HPCA, pp. 79-90, 2003.

[19] J. Zhao, et al., “Thermal-aware voltage droop compensation for multi-core architectures,”

Proc. GLSVLSI, 2010.

[20] V. Reddi, et al., “Voltage Emergency Prediction: A Signature-Based Approach To Reducing

Voltage Emergencies,” Proc. HPCA, pp. 18-27, 2009.

[21] K. Hazelwood, et al., “Eliminating Voltage Emergencies via Microarchitectural Voltag

Control Feedback and Dynamic Optimization,” Proc. ISLPED, pp. 326-331, 2004.

[22] NVIDIA's Next Generation CUDA Compute Architecture: Fermi, Whitepaper, V1.1, 2009.

[23] D. Bortolotti, et al., “Exploring instruction caching strategies for tightly-coupled shared-

memory clusters,” Proc. Int. Sym. on SoC, pp. 34-41, 2011.

[24] K. Bowman, et al. “A 45 nm Resilient Microprocessor Core for Dynamic Variation Toler-

ance,” IEEE J. of Solid-State Circuits, Vol.46, No.1, pp.194-208, Jan. 2011.

[25] A. Rahimi, et al., “A Fully-Synthesizable Single-Cycle Interconnection Network for Shared-

L1 Processor Clusters,” Proc. DATE, pp.1-6, 2011.

[26] E. Beigne, et al., “An Asynchronous Power Aware and Adaptive NoC Based Circuit,” IEEE

J. of Solid-State Circuits, Vol.44, No.4, pp.1167-1177, April 2009.

[27] TSMC 45nm standard cell library release note, TCBN45GSBWP, version 120A, Nov. 2009.

[28] Synopsys PrimeTime® VX User Guide, June 2011.

[29] LEON3 [Online]. Available: http://www.gaisler.com/cms/

[30] EEMBC benchmark Consortium [Online]. Available: http://www.eembc.org

