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Abstract. SystemC is a popular language used in modeling system-
on-chip implementations. To support this task at a high level of ab-
straction, transaction-level modeling (TLM) libraries have been recently
developped. While TLM libraries are useful, it is difficult to capture
the reactive nature of certain transactions with the constructs currently
available in the SystemC and TLM libraries. In this paper, we propose
an approach to specify and verify reactive transactions in SystemC de-
signs. Reactive transactions are different from TLM transactions in the
sense that a transaction can be killed or reset. Our approach consists of:
(1) a language to describe reactive transactions that can be translated to
verification monitors, (2) an architectural pattern to implement reactive
transactions, and (3) the verification support to verify that the design
does not deadlock, allows only legal behaviors and is always responsive.
We illustrate our approach through an example of a transactional mem-
ory system where a transaction can be killed or reset before its comple-
tion. We identify the architectural patterns for reactive transactions. Our
results demonstrate the feasibility of our approach as well as support for
a comprehensive verification using RuleBase/NuSMV tools.

1 Introduction

Transaction-level models are useful in SystemC [1] to understand a system by
abstracting the low-level bus signaling details. In this paper, we build upon this
work by extending the transactions to support reactive features that are com-
monly found in frameworks such as Esterel [2]. Reactivity can provide one with
the capability to kill or reset a transaction before the transaction completes. This
is analogous - but for transactions - to the reactive features for processes that
were present in the earlier versions of SystemC through the “wait” and “watch-
ing” syntactic constructs [3]. The “watching” constructed was later dropped
from SystemC due to lack of use. However, as the libraries evolve and as the role
of TLM models is increasing, we believe that these constructs would find greater
use and simplify the design migration to higher levels of abstraction.

This investigation of specification and verification of reactive transactions was
motivated by an experiment to model and verify a transactional memory using
interaction descriptions and SystemC. The fundamental difference between the
transactional memory model and the typical TLM models built with SystemC is
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the following: in the transactional memory, a process that initiates a transaction
can be reset before the transaction completes. Then, the pending transaction
could be reset or not, depending on what the desired outcome is. Unfortunately,
it is not possible to capture this kind of behavior with the current SystemC
TLM libraries. Therefore, we had to re-think what a transaction is and what
are the syntactical and architectural features that are necessary to capture the
reset and kill behavior, and how to use the formal verification to guarantee the
implementation of the transaction specifications.

We found three challenges for specifying implementing and verifying the re-
active transactions with SystemC. The first one is to specify the transactions
using the property specification languages. Because many events can potentially
happen at the same time, the properties can be very tedious to specify. From
our experience, as a specification can take many simultaneous events at one
time, and because the properties need to describe every possible scenario, the
properties become very large as one basically has to compute and write down
the product of all possible event combinations for the TLM events. The second
challenge is that it is difficult to implement reactive features within SystemC
TLM models. This is because there are no do/watching statement we can use
to capture the reactive behaviors and the necessary transaction handlers. Also,
since the transaction events are atomic rendezvous in the specification and hand-
shakes in the implementation, the implementation of the reactive transactions
can be challenging as mismanaging the handshakes with the resets could easily
cause synchronization problems such as deadlocks. Finally, the third challenge
is to have an efficient SystemC verification framework that support the reac-
tive transactions as a first-order construct and also includes the capability of
verifying liveness properties.

In this paper, we present an approach to specify and reason about the reactive
transactions by defining a language that will capture the transactions, and a
tool to translate these specifications into verification monitors. While one could
argue that such transactions could be specified using PSL [4], we believe the
task can be slightly tedious as the properties become long and complex. This is
evidenced by the continuing evolution of PSL into more elaborate higher-level
design languages [5] where the specification can be a bit more high-level, making
the specification easier to write. In that spirit, we use a specification language
that is inspired by the process algebraic framework of CRP [6]. Our framework
enables the specification of rendezvous communications a la CSP, as well as the
reactive features provided by the Esterel constructs. We extend those ideas to
add the features that are necessary for transactions.

The contributions described in this paper are as follows. First, we define a
high-level language inspired by CRP to describe reactive transactions and their
compositions as a first-order construct. Second, using the standard syntax, we
provide a TLM extension in the form of an architectural pattern to capture the
reactive transactions, with the cascading of resets. Third, we believe are the first
to formally check TLM models with respect to transaction specifications rather
than generic properties.
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The rest of the paper is organized as follows. In the next section, we present the
related work in monitor-based verification and SystemC verification. In Section
3, we describe a subset of the Transactional Memory example that motivated
this work, and the problems and challenges of specifying and verifying reactive
transactions. In Section 4, we describe how to specify reactive transactions, with
the definition of the syntax and semantics of the specification language. In Sec-
tion 5, we describe how to implement the reactive transactions in SystemC, and
then present our experiments and results in Section 6, followed by a discussion
and the conclusion.

2 Related Work

We broadly categorize the related work as being the specification of protocols
and the generation of verification monitors, as well as the verification of SystemC
designs. In some sense, this work bridges transaction specification with SystemC
verification by using the specification of transactions for TLM verification.

2.1 Protocol Monitors

In the context of system-level design, a transaction is a concept that is a slight
bit above the components. We need to capture the transactions spanning accross
multiple components in the system into properties that can be used for verifi-
cation. Specification languages do not clearly provide the necessary constructs,
since there is no notion of global transactions.

To address this gap, there have been several attempts at describing trans-
actions as high-level entities, at the level above the components. Seawright et
al. [7] proposed an approach to describe the transaction that can happen at
an interface using regular expressions. Such a protocol description can be used
to generate interface monitors from the regular expressions. Siegmund et al. [8]
followed this approach and showed how one can synthesize bus interface circuits
from the regular expressions. The approach has the advantage that, instead of
describing the producer and the consumer, the description models the protocol
as a monitor that observes a set of variables. To describe the monitor, their
language has four operators: “serial”, “parallel”, “repeat” and “select”. A syn-
thesis algorithm is used to generate the state machines for both the producer
and the consumer. Although it greatly simplified complex hardware design, one
of the limitations is that it can be difficult to specify and synthesize the reactive
features (kill/reset) with the available operators.

Several more interesting contributions followed. Oliveira et al. [9] extended
monitor-based specification languages by introducing storage variables, a pipeline
operator, and also improved the algorithms for generating the protocol monitor.
However, one drawback of their approach is the lack of formal semantics. Shimizu
[10] addressed part of the problem by using a framework of concurrent guarded
transitions, and showed how to model check the descriptions for useful properties.
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Interface descriptions and monitors are now widely used for both documenta-
tion and validation [4] [11]. Many engineers use the PSL language (and extensions
[5]) to describe the interfaces, and several tools exist to generate protocol moni-
tors for simulation. There exist commercial tools that generate protocol monitors
from such descriptions for simulation or verification, notably FoCs [12]. In this
context, we see two opportunities stemming from this body of work: (1) to eas-
ily and elegantly capture the reactive features in the transactions, and (2) to
have a compositional analysis from transactions to interface specification, which
challenging to achieve with the reactive features.

2.2 SystemC Verification

The goal of the Transaction-Level Modeling (TLM) with SystemC [13] is to de-
fine a model where the details of the RTL bus communications are abstracted
away either (1) instead of going through signal transitions, have a component
directly call the method of another component, or (2) having the components
communicating through buffered FIFO communications. In both cases abstract
data types can also be used to bundle low-level bus data types into one chunk of
data. The benefit of using a TLM model is that the simulator does not need to
spend cycles on simulating all the RTL bus synchronizations, thus the design will
simulate much faster. Typically, a SystemC TLM model simulates 2-3 orders of
magnitude faster than an “equivalent” RTL model. There exists a number of ver-
ification approaches for both RTL and TLM models written in SystemC. These
approaches support TLM models in the sense that they support the syntactic
constructs found in the models, which include function calls, access to FIFO
buffers, and reading and writing signals. However, it is difficult to verify a TLM
model because (1) the model can be non-deterministic due to the shared variable
communications within the channels, and (2) the number of elements queued in
a FIFO buffers can grow without a bound. Thus, all existing approaches impose
restrictions on the input syntax to avoid these problems.

The approach defined by Habibi et al. [14] uses a specification format based
on PSL sequences or basic Message Sequence Charts, augmented with clocking
guards. The properties range over the signals and the buffers in the architec-
ture. A property is translated into a monitor, which is an automaton with fail,
in-progress and accept states. Similarly, a SystemC design is translated into au-
tomaton and then the design and the property automata are composed together.
During the composition, the ASML composition tool will expand the state ma-
chine and check that the monitor is always asserted. Similarly, the Lussy tool
suite developed by Moy et al. [15] translates SystemC modules into an inter-
mediate automaton based on the Lustre formalism. This approach also uses
synchronous observers for verification. In this work, the notion of a transac-
tion matches the SystemC TLM definitions, where the bus transactions which
are abstracted into simple function calls. These function calls are then mapped
to architectural blocks that capture the TLM communication through simple
minimal handshakes. The approach by Kroening [16] provides efficient SystemC
verification by using by translating a SystemC model to a SMV description,
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using predicate abstraction and other techniques. However, here again there is
no explicit notion of a transaction.

3 Motivating Example: Transactional Memory

Figure 1 shows an example of how modules, channels and buffers are connected
in the transactional memory system. There are three components with their own
threads: the program segment, the controller and the cache. There are also two
channels, which convert a SystemC TLM method call into a request/response
handshake through buffers.

Cache

channel
Ctrl

reset

Prog
segment

read()

write()
req_buf1

rsp_buf1

Controller

channel
Cache req_buf2

rsp_buf2

get_value()

write_value()

addr_in_cache()

Fig. 1. Simplified example architecture for the Transactional Memory model

The program segment starts a read() or a write() transaction with a
method call to the channel. Figure 2 depicts a scenario for the interactions for
a read transaction. The channel converts the call to a request which it places
on th req buf1 buffer. The controller will pick up the request, and if it is a
read request it is going to check if the address is in the cache by calling the
addr in cache method of the cache channel. If it, then it will get the value by
calling the get value method. If it is a write request, it will just call the write
value method. The methods of the cache channel will generate a request to the
req buf2 buffer. The cache will then process the request and place the response
on the response buffer rsp buf2, and the response will eventually make its way
to the program segment that will eventually pick it up through the value re-
turned by the original method call. Note that for a read or write transaction,
there is at least one sub-transaction that will be called the controller and the
cache.

The reset signal is used to reset the program segment when there is a conflict
on the cache. The program segment can be reset at anytime while a transaction
is in progress. The main challenge in this example is the following: when the
program segment is reset, what happens with the pending transactions? Should
they complete or be killed? It is the responsibility of the designer (or the synthesis
tool) to decide what the desirable outcomes in such situations are. However,
in the current SystemC TLM standard, there is no support to handle these
situations. Therefore, defining the required control signals and communication
protocols to support these situations, both for specification and verification, is
the central problem we are addressing in this paper.



Reactivity in SystemC Transaction-Level Models 39

get(GET_VALUE,a)

put(d)

get(d)
put(d)

put(GET_VALUE,a)
get_value(a)

get_value(a,d)

get(d)

read(a,d)

channel
Cache

channel
Ctrlprog segment cachersp_buf2req_buf2controllerrsp_buf1req_buf1

put(READ,a)read(a,d)
get(READ,a)

is pending
transaction

get_value()
read()

transaction
is pending

Fig. 2. Message exchange and scope for a read transaction

4 Specification of Reactive Transactions

We capture a transaction as a first-order entity, in the sense that it can be
specified, it has a context, control signals and that it can describe behavior
which can be distributed over many components in an architecture. Figure 3(a)
depicts the “abstract” interface of a transaction: there is a start and a done
signal, both being used as the normal and entry and exit event of the transaction.
As its name indicates, the kill signal is used to terminate a transaction. The
status is used by other components to observe the status of the transaction.
The possible statuses are “ready”, “done”, “in progress” and “killed”. Figure
3(b) and Figure 3(c) shows the abstract interface behavior for a terminating and
a reactive transaction. The start and done signals are abstract in the sense that
they can be mapped to given events in the system, such as specific reading a
value for a buffer. In between and start and the completion of a transaction can
be events, operations, and sub-transactions.

The specification language we use to capture transactions is rooted in CRP,
but we augment it to capture the transactions as first-order constructs. The

start transaction

kill status

done

(a)

ready inprogress

done

start?/inprogress

done!/done

kill?/killed

(b)

killed
/ready

inprogress

(c)

start?/inprogress

kill?/ready

done!/ready

ready

/ready

Fig. 3. Interface for Reactive Transaction: (a) control and status signals (b) normal
transaction (c) reactive transaction
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formal foundation of CRP [6] is composed of CSP [17], where we borrow the
rendezvous communication, with the synchronous foundation in Esterel with its
reactive features [2]. In the same fashion, we will define the semantics of our
specification language with a semantics domain composed of an environment,
which is a set of events, rendezvous actions, pending labels and status flag, and
a set of state variables. The semantics of a specification description is defined
through a transition system which is induced by operational semantics rule of
the form:

(〈stmt〉, σ)
〈E′,A′,L′,b〉−−−−−−−−→

〈E,A,L〉
(〈stmt′〉, σ′)

where:

– stmt is a specification statement, meaning the location of the program
counter for the specification, and stmt′ is the program text with the location
of the program counter after the transition,

– σ and σ′ are the states before and after the reaction respectively,
– E is the set of events in the environment before taking the transition
– L is the set of pending labels in the environment before taking the transition,
– E′ is the set of events emitted by this transition,
– A′ is the set of rendezvous labels agreed for this transition,
– L′ is a set of pending labels, containing the pending labels after taking the

transactions,
– b is a boolean flag indicating if the taken transition terminates (blocks) the

instantaneous reaction or not.

Figure 4 shows the main statements in the language, and Table 1 and 2
show the functions defining the semantics for the transaction and reactive state-
ments respectively. The statements to specify the behaviors of transactions are
exec start and exec done, where exec start t will denotes the beginning of
a transaction t, synchronizing on rendezvous start(t), and posting a label pend-
ing(t) in the environment (to remember that transaction t is pending). Similarly,
statement exec done t denotes the completion of t, and synchronizes on ren-
dezvous done(t), also removing the pending label t from the environment. The
exec start t and exec done t statements are meant to be paired with rv rcv
t and rv snd t rendezvous statements. The exec statements are to be used by
the master process (the one initiating the transaction), and rendezvous state-
ments are used by the slave process (the one receiving the transaction). The only
difference between the exec and the rendezvous statement is the exec statements
post and remove a transaction labels in the environment.

The rendezvous statements work like CSP rendezvous, with a slight variation
to accommodate the synchrony hypothesis. The synchrony hypothesis, a concept
defined in Esterel [2], is that at a given instant, all processes synchronously
execute a sequence of statements instantaneously (up until the next pause). The
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rv snd a and rv rcv a statements synchronize on the shared action a only if
that action is not in the preceding environment, and is present only in the output
environment. This is to avoid the possibility of a rendezvous being taken twice
during a synchronous reaction (synchronous as in synchrony hypothesis).

The watching statement is used to monitor events which will interrupt state-
ment stmtwhen bexpr evaluate to true. When the condition evaluates to false, the
watch computation will keep proceeding along stmt and its derivative (stmt can be
a complex statement) until the termination of stmt. If the condition is true, then
the computation of stmt will terminate immediately, and all the pending transac-
tions will be killed, and L′ will be empty. In other words, during a watch condition,
if there is a pending transaction label, the transaction will be killed - including all
transactions started by stmt. This ability to keep track of what transactions has
been started, and be able to kill them in the event to a watch statement is the
main feature of the reactive transaction specification language. This is the same
as the hidden signals that are found in the composition operators (such as prefix)
in process algebras, and used to simplify specifications. Note that it is possible to
define scopes for the set L of pending labels to follow the hierarchical structure of
the specification. But this leads to much more complicated semantic rules, which
we will omit for the sake of space and simplicity.

The rest of the language borrows heavily from CRP, with the wait, emit, ren-
dezvous, sequencing, choice, guarded actions and pause statements. The emit
statement posts an event e into the set E′, while a wait expression is evaluated
in the incoming environment E. The pause statement terminate an instantaneous
reaction. The language also has constructs for parallel compositions, arithmetic
and Boolean expressions, and usual control flow statement etc. The syntax se-
mantics of these and other statements in the language follow from the definitions
Esterel and CSP with the addition of the transformation for the synchrony hy-
pothesis, but are out of the scope of this paper.

stmt ::=
exec_start t /* start transaction t */

| exec_done t /* wait for transaction t to be done */
| rv_snd a /* rendezvous at a (can send data) */
| rv_rcv a /* rendezvous at a (can receive data) */

| do { stmt } watching bexpr /* do/watching stmt */
| G(bexpr) {stmt} [] G(bexpr) {stmt} /* guarded selection */
| stmt |C| stmt /* choice */
| stmt ; stmt /* sequence */

| emit e /* emit event e */
| wait bexpr /* wait for given boolean expression */
| pause /* wait for a moment */

Fig. 4. Syntax of the specification language
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Table 1. Semantics for the Transaction Statements

(rv-snd-1)
a /∈ A

(rv snd a, σ)
〈∅,a,L,1〉−−−−−−→
〈E,A,L〉

( , σ)

(rv-snd-2)

(rv snd a, σ)
〈∅,∅,L,0〉−−−−−−→
〈E,A,L〉

(rv snd a, σ)

(rv-rcv-1)
a /∈ A

(rv rcv a, σ)
〈∅,a,L,1〉−−−−−−→
〈E,A,L〉

( , σ)

(rv-rcv-2)

(rv rcv a, σ)
〈∅,∅,L,0〉−−−−−−→
〈E,A,L〉

(rv rcv a, σ)

(exec-start-1)
start(t) /∈ A

(exec start t, σ)
〈∅,start(t),{L∪pending(t)},1〉−−−−−−−−−−−−−−−−−−−→

〈E,A,L〉
( , σ)

(exec-done-1)
done(t) /∈ A

(exec done t, σ)
〈∅,done(t),{L\pending(t)},1〉−−−−−−−−−−−−−−−−−−−→

〈E,A,L〉
( , σ)

(exec-start-2)

(exec start t, σ)
〈∅,∅,L,0〉−−−−−−→
〈E,A,L〉

(exec start t, σ)

(exec-done-2)

(exec done t, σ)
〈∅,∅,L,0〉−−−−−−→
〈E,A,L〉

(exec done t, σ)

5 Verifiable Implementation in SystemC

In this section we discuss the following challenges in the verifiable implementa-
tion of reactive transactions:

1. How to have an implementation of reactivity through a simple architectural
pattern that is generalizable for reactive transactions, and

2. How to correlate the atomic events in a transaction specification to the non-
atomic handshakes in the SystemC code.

5.1 Reactivity Through Exceptions and Architectural Patterns

To implement reactivity within TLM models, we need to use the reactive features
that were removed from SystemC a short time ago. These watching-and-waiting
statements have been using exceptions to throw special conditions designating
reset conditions [3]. For this purpose, we follow a similar pattern and we intro-
duce a new wait macro, which we call MYWAIT :

#define MYWAIT(event_expr, reset_cond) \
wait(event_expr); \
if (reset_cond) \
throw 1;
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Table 2. Semantics for the Reactive Statements

(do-watching-1)

σ �|= bexpr (stmt, σ)
〈E′,A′,L′,b〉−−−−−−−−→

〈E,A,L〉
(stmt’, σ′)

(do {stmt} watching (bexpr), σ)
〈E′,A′,L′,b〉−−−−−−−−→

〈E,A,L〉
(do {stmt’} watching (bexpr), σ′)

(do-watching-2)

σ �|= bexpr (stmt, σ)
〈E′,A′,L′,b〉−−−−−−−−→

〈E,A,L〉
( , σ′)

(do {stmt} watching (bexpr), σ)
〈E′,A′,L′,b〉−−−−−−−−→

〈E,A,L〉
( , σ′)

(do-watching-3)
σ |= bexpr

(do {stmt} watching (bexpr), σ)
〈∀t∈L:kill(t),∅,∅,〉−−−−−−−−−−−−→

〈E,A,L〉
( , σ)

The macro defines a wait statement, which will wait on a given list of events.
This will be a regular transaction event, or a reset event. The second parameter is
the reset condition, and it identifies which event condition means the transaction
has been reset, and if this condition holds the macro will throw an exception
(here just an integer). An example of how to use this macro is as follows:

MYWAIT( (clk.posedge_event() | reset.posedge_event()),
(reset.event() && reset==1) );

where the event expression is either a clock up-tick or a reset up-tick, and the
reset expression a reset event and the reset signal to one. The MYWAIT macro
is meant to be used inside a try/catch statement. Here is an example of a process
which invokes a write transaction on a ctrl channel:

try {
ctrl->write(1,1)

} catch (int reset_code) {
ctrl->kill__write();

}

When a reset event occurs, the exception will be thrown from inside the
write() method implementing the transaction inside the ctrl channel. The ex-
ception will be caught by the outer handler– not in the channel but in the com-
ponent. In this case, the process can choose to kill the transaction in the server
by calling the kill write() method on the channel to send the kill signal to
the server.

In this case, the handling of the reactivity can be done inside the component,
but in general an architectural pattern with a transaction controller and a sepa-
rate controller helper to handle the reactivity can be used. Figure 5 shows the ar-
chitectural pattern to use to separate the reset conditions from the regular TLM
processing. A controller processes transactions and dispatches sub-transactions.
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pending__t2

controller
helper

controller

kill__t1

start__t1

done__t1

start__t2

done__t2

kill__t2

Fig. 5. Architectural pattern to propagate the transaction kills

With the architecture on the figure, assume a situation where a transaction t1
is started, followed transaction t2 being started by the controller, t2 being nec-
essary to complete t1. When t2 is started, signal pending t2 is sent to the
controller to tell that t2 is pending. If t1 is killed while t2 is pending, then from
pending t2 the controller helper will go ahead and kill t2.

This pattern is useful when a controller helper can process and keep track
of all the simultaneous transactions. Then, the controller it does not have to
be concerned about keeping track of which sub-transactions to kill, matching
the idea the designer has when using the transaction description algebra. An
underlying question is how to implement this controller helper.

5.2 Non-atomicity of Rendezvous and Kill Handlers

In the specification, a rendezvous is atomic. However, in the SystemC TLM
implementation, a rendezvous is not atomic but a handshake. The master com-
ponent synchronizes with the slave (also called the transaction server - or just
server) through a method call that leads to an exchange using a TLM FIFO
buffer. Until the slave has picked up the data from the buffer, the exchange can-
not be considered done, but only in progress. In that sense, the challenge here
is implementing the transactions with the reactive features is to manage the
kills that occur during the handshakes that are in progress. When a kill occurs
during that time, there has to be special conditions to correlate the non-atomic
exchange to the atomic exchange in the specification.

Figure 6 shows the scenarios that can occur when kill happens during a hand-
shake. Each of these scenarios requires a specific handling strategy which will
make sure the buffers are emptied and the transaction in the slave is cleanly
killed. The first case, illustrated Figure 6(a), is when t2 gets killed before it
started; this assumes that the server of t2 will be able to eventually unblock and
pick up the request from the buffer, see the kill t2 signal to be asserted, and
then thus discard the request:

if ( pending__t2 and ready__t2 and full(t2_req_buf) ) {
kill__t2 = 1;
wait_until empty(t2_req_buf);
kill__t2 = 0;

}
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in progress done

in progressstatus t1 killed

kill t1

t2 rsp buf

status t2

pending t2

kill t2

in progressstatus t1 killed

ready in progress

kill t1

status t2

t2 req buffer

pending t2

kill t2

in progressstatus t1 killed

kill t1

t2 rsp buf

status t2

pending t2

kill t2

donein prog.

?

?

?

(a) (c)(b)

Fig. 6. Scenarios for handshakes with kill: (a) request posted but slave has not picked
up yet, (b) slave is processing transaction, (c) slave is done but master has not picked
up response yet

The second scenario is when t2 terminates at the same time it gets killed. In
that case, the handler might need to pick up and discard the response:

if (pending__t2 and in_progress__t2_) {
kill__t2 = 1;
wait_until ready(t2) or kill(t2) or done(t2);
kill__t2 = 0;
if (full(t2_rsp_buf))
get(rsp_buf)

}

The third scenario is when t2 is done serving the transaction, but the master
has not yet picked up the response from the buffer. Then, the handler just picks
up and discards the response from the buffer:

if (pending__t2 and ready__t2 and not full(t2_rep_buf)) {
assert( full(t2_rsp_buf) );
get(t2_rsp_buf);

}

We believe that, the transaction interfaces defined in our reactive transac-
tion framework gives the tools to implement the handling strategies for reac-
tive transactions. However, it is the responsibility of the designer to make sure
there are no deadlocks and de-synchronization situations in the design. While
we provide the signals and the patterns, correctly implementating the transac-
tion controllers can be a challenging task. In that context, it is very valuable to
have the verification support to be able to formally prove the correctness of the
implementation.

6 Experiments and Results

Our verification setup is to use monitor-based model checking, where a monitor
will check a SystemC component for any unallowed behaviors. Furthermore, we
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also use temporal logic formulas to ensure no deadlocks or stalls are reached. To
convert a specification description into a verification monitor, we designed and
implemented a Spec Analyzer tool. The conversion from specification to monitor
directly follows the operational semantics rules, with the addition of the conver-
sion for the synchrony hypothesis. The pass about the synchrony hypothesis
is used to reduce a sequence of micro-transitions into one synchronous macro-
transition, by following the termination flag (the b in the semantic rules). The
Spec Analyzer generates a verification monitor which has a an error state which
denotes a problem in the design, as well as a special state to handle the environ-
ment assumptions (whether we are “in-transaction” or not). Furthermore, using
the Module Analyzer tool we previously presented [18], we convert the SystemC
to a transition system described in an SMV file.

For the example, we implemented a simplified version of the transactional
memory in SystemC with the reactive transactions library. Figure 7 shows the
structure of the system we implemented and verified. The structure is the same
as the one in Figure 1 with the addition of the reactive features. The program
segment implements reactivity with a try/catch and takes care of the pending
transactions in its catch handler. For the controller, we use the pattern with the
controller helper as described in the previous section.
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Fig. 7. Reactive architecture for the simplified Transactional Memory model

We have verified the design both at the system-level and at the component
level. At the system-level, the global specification is an infinite sequence of read
or write transactions that can be reset and restarted. We derived local component
specifications from the global transactions for component-level verification.

Figure 8 lists the specification for the controller, which reads as follows:
the controller will first wait for a rendezvous on either a read start or
write start transaction. These transactions are to be initiated by the pro-
gram segment using exec statements. Then, if controller picks up a read or a
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while (true) {
rv_rcv read__start |C| rv_rcv write__start ;
G( read__start && !read__kill ) {

do {
exec_start addr_in_cache;
exec_done addr_in_cache;
exec_start get_value;
exec_done get_value;
rv_snd read__done

} watching read__kill__posedge_event
} [] G( write__start && !write__kill ) {

do {
exec_start write_value;
exec_done write_value;
rv_snd write__done

} watching write__kill__posedge_event
} [] G( (!(read__start && !read__kill )) &&

(!(write__start && !write__kill)) ) {
// other guards are false

};
}

Fig. 8. Specification for the Controller

write transaction and it was not killed at the same instant, it will proceed on
it; if the transaction was killed it will discard the request go back to the ren-
dezvous. When the controller processes the read transaction, it will execute two
sub-transactions and complete with a done rendezvous - all this while watching
the kill read condition. If a kill read occurs, the controller shall return to the ini-
tial rendezvous, and the pending transactions will get killed by the combination
of exec and watching statements. A write transaction works similarly. Note that
the controller can wait for an arbitrary amount of time between the rendezvous.

Table 3 lists the verification results for the example using NuSMV 2.4.3. For
each run, the property we verify are the following:

1. Monitor assertions: AG !(monitor.state==ERROR)
This guarantees all the behaviors of the implementations are permitted by
the transaction specification;

2. C++ assertions: AG !(component.ERR)
When an assertion inside a C++/SystemC module fails, it will set the ERR
flag. This is often used to monitor the conditions inside the modules.

3. Liveness assertions: AG AF trans starts or AG EF trans starts
The liveness property specifies that we can always eventually start a new
transaction, or there always is a path leading to the start of a new trans-
action, depending on how strong the property has to be. This will prove
absence of stalls or deadlocks with respect to those events and the branch-
ing conditions.
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The verification times for all the properties are compounded in the entries of
Table 3. The transaction channels are inlined inside the SystemC components.
To keep track of transactions implemented through method calls, start and done
events are added at the boundary of methods calls. We also currently limit the
sizes of the TLM buffers to one unit only. The verifiation times are reasonable,
and in line with the verification times for other SystemC verification frameworks.
However, we cannot fairly compare our numbers with the numbers from other
verification frameworks because the other frameworks do not capture the reactive
transactions as we do, thus the specification is different. As for the numbers in
the table, one can notice that the verification of the Controller + Controller
Helper takes significantly more time and space than for the other components.
This is because the controller interacts with all components - thus all buffers are
there - and its environment model has many constraints.

Table 3. Verification results (with NuSMV)

Configuration Time (sec) Memory (KB)
full system 671 102864

prog segment 41 19168
controller (+ controller 483 97368

helper)
cache 131 40300

Note that we did not prove the compositionality of the specification, and this
is outside the scope of this paper. The system-level verification is important to
prove that the reset of nonatomic rendezvous avoids all integration problems. In
our case, we found several integration bugs and this lead us of to formulate those
conditions. One of the next steps is to generalize those conditions and elaborate
a proof structure to avoid having to do the system-level verification.

7 Summary and Future Work

In this paper, we have presented an approach to specify, implement and verify
reactive transactions in SystemC. To specify the transactions, We defined a
language that implicitely keeps track of pending transaction and a watching
statement is used to abstract away the bookeeping details of propagating the
reactivity to sub-transactions (propagating the reset and kill events).

Many of the implementation efforts are spent on explicitely instantiating these
signals in an verifiable implementation pattern. Indeed, we provide the sketch of
an architectural pattern to implement the reactive transactions in SystemC, as
well as an outline of the conditions to correlate the non-atomic SystemC imple-
mentation of atomic transaction events. Our third contribution is the verification
path, currently supported by SMV-based model checkers.
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One of the broader goal of this work is to exploit the compositionality in
the transaction specifications, as well as, when possible, its reflection in the
architecture and proof structure. We believe that the style of specification we
have developed will be amenable to the decomposition and consistency checks
that are necessary for to support this example. In that context we are also
investigating using equivalence checking techniques to address the verification
problem more directly.
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