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ABSTRACT

In majority of high-performance custom IC designs, designers take advantage of the high degree

of regularity present in circuits to generate e�cient layouts in terms area and performance as well as

to reduce the design e�ort. In this paper, we explain how regularity manifests itself at functional,

structural and topological levels. Using these notions, we present a general and comprehensive

approach to extract functional regularity for datapath circuits from their high-level or gate-level

descriptions. The fundamental step is the generation of a large set of templates, where a template

is a subcircuit with multiple instances in the circuit. Two novel template generation algorithms

are presented | one for templates with a tree structure, and the other for a special class of

multi-output templates, called single-principal-output (single-PO) templates, where all outputs of

a template are in the transitive fanin of a particular output. The set of templates generated is

shown to be complete under a few simplifying, yet practical, assumptions, which is key in obtaining

a desirable cover of the circuit using templates. We show that the generation of such a large set

of templates results in excellent covers for various circuits, including several ISCAS benchmark

circuits. We also demonstrate that the regularity extracted from these circuits can be used to

easily understand their structure. We have successfully used our approach to identify bit slices of

very large datapath circuits from general-purpose microprocessors, which would lead to e�cient

layouts with a signi�cant reduction in the overall design e�ort.
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   f[i] = c[i] OR y[i];

b[0]

   x[i] = f[i] on rising clk;
   }

for i = 0 to 1 do
   {

   d[i] := a[i] AND y[i];
   e[i] := d[i] on rising clk;
   y[i] := if s0 then e[i] 
           else b[i]
   }

MODULE Example

begin main

end main;
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for i = 0 to 3 do
   {

Outputs x[1:0], y[3:0];
Clock  clk;
Inputs a[3:0], b[3:0], c[3:0], s0;

c[0] a[0] b[3] a[3]a[2]b[2]
b[1] a[1]c[1]

Figure 1: High-level description of a circuit, where the regularity is evident from the corresponding gate-level
description. Three templates S1, S2 and S3 are identi�ed.

1 Introduction

Datapath circuits in general-purpose microprocessors as well as application-speci�c integrated cir-

cuits (ASICs) perform a variety of boolean and arithmetic operations on busses with a width of

up to 64 bits. Such circuits have a very high degree of regularity. Designers often exploit this

regularity in circuits to achieve regular layouts with a small area and a high performance. The

datapath regularity de�nes a natural hierarchy of the circuit, which simpli�es the overall design

process. As a result, the total design e�ort is reduced by identifying regularity in circuits, thus

improving the productivity of designers. Therefore, a very important task in datapath design is

to extract the regularity inherent in the circuits. Existing CAD tools can not extract and utilize

regularity to the extent necessary for competitive designs. Therefore, datapath circuits in general-

purpose microprocessors are currently designed almost entirely by hand [6]. There is an urgent

need for a regularity extraction approach that would speed up the design of e�cient regular layouts

of datapath circuits.

We assume that the input circuit is described by a hardware description language (HDL), such as

Verilog or VHDL. The operators in the HDL descriptions can be either logic gates, such as AND, OR

and multiplexors, or arithmetic operators, such as adders, subtracters and shifters. For example,

Fig. 1a illustrates the high-level description of a small circuit, along with the corresponding gate-

level description. Regularity in a circuit implies that there exists subcircuits, called templates, which

have multiple instances in the circuit. The circuit of Fig. 1a has four instances of template S1, and

two of templates S2 and S3 each. The task of regularity extraction is to identify a set of templates,

and cover the given circuit by a subset of these templates, where the objective is to use large

templates which have a large number of instances. The regularity extraction involves a tradeo�,

since a large template usually has a few instances, while a small template has a high number of
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Figure 2: A 4� 4 multiplier with inputs X3; : : : ; X0, and Y 3; : : : ; Y 0, which is covered by two templates.

instances. Usually, a large template implies a better optimization of area and performance, while a

template with more instances requires less design e�ort, since a template is designed only once for

all its instances. For example, the circuit in Fig. 1a can be covered by two instances of S2 and four

of S1, or by two instances of S3 and two of S1. The �rst cover results in a lower design e�ort, while

the second cover might lead to a more e�cient layout, since it can optimize across the boundary

between S1 and S2. Another example is the 4 � 4 multiplier, whose gate-level representation is

shown in Fig. 2. It is composed of SUM, CARRY and AND functions. It can be covered by three

instances of template S1 which is a diagonal array, and four instances of template 2 which is just

an AND gate. If the structure of the multiplier is unknown, then the extraction technique should

generate a cover of these two templates. In general, an extraction approach should be able to

generate a range of covers to assist the designer in selecting the most desirable cover.

Regularity in a given circuit can be classi�ed as either functional, structural or topological.

Given a high-level (behavioral or structural) description, a functionally-regular circuit uses a set of

functionally-equivalent operations or subcircuits (templates). Functional regularity is an essential

�rst step towards the generation of a compact and regular layout of the circuit. It can also be used

to restructure the HDL code, for instance to improve the quality of high-level synthesis results by

identifying opportunities for resource sharing [13]. Structure in an HDL description typically refers

to declaratively speci�ed blocks [8] consisting of a netlist where the nets or signals can be classi�ed

as control or data. A structurally regular description can be described schematically by assigning

a horizontal or vertical direction to the nets. Finally, a topologically regular design consists of an
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ordered set of blocks which gives a good initial placement for the circuit. Our synthesis approach

for datapath circuits identi�es functional and structural regularity in HDL descriptions and uses

it to build topologically regular circuits. In this paper, we are concerned with identi�cation of

functional regularity in high-level descriptions.

Several techniques for extraction of functional regularity have been proposed in the literature

[17, 2, 16, 15, 11, 14, 1]. Most of these techniques focus on mapping the circuit by templates,

assuming that a template library is provided by the user. Very few techniques address the problem

of generating a good set of templates. Given a library of templates, Corazao et al. [2, 16] address

the problem of mapping a circuit described at a behavioral level using templates from the target

library. Their approach addresses several key subproblems, such as �nding complete as well as

partial matches of a template and selecting a good set of templates to optimize the clock period.

Rao and Kurdahi [17] represent the input circuit as well as templates from the given library by

strings, and use a string matching algorithm to �nd all instances of the template in the circuit. A

subset of the template set is then heuristically chosen to cover the input circuit. Rao and Kurdahi

[17] present a simple heuristic to generate a set of templates. The �nal cover is very sensitive to

these templates. Odawara et al. [15] presented a methodology to identify structural regularity in

highly-regular datapaths. Their method chooses latches driven by the same control signals as initial

templates, and uses them to grow larger templates. Odawara's approach identi�es one-dimensional

regularity in terms of bit-slices of the datapath. Other approaches by Nijssen et al. [14] and Arikati

et al. [1] extend Odawara's methodology to identify bit slices as well as stages of datapath circuits.

These structural methods perform well for highly-regular circuits, but might not work for circuits

with a mix of datapath and control logic. A problem similar to regularity extraction is technology

mapping, where the input circuit is covered by cells (templates) from a given library. Keutzer

[12] proposed an approach of partitioning the circuit into rooted trees, followed by mapping the

trees using library cells by dynamic programming. The above techniques address the problem of

covering a circuit by templates, where the templates are either provided by the user or generated

in an ad-hoc manner. None of these techniques deal with the systematic generation of a set of

templates for a given circuit. From our experiments, formulation of a good set of templates is

crucial for two reasons: (a) it allows tradeo�s among multiple criteria, such as area, timing or

power, and (b) it provides controllability of the datapath synthesis process by the designer to

support multi-technology designs, such as those using a combination of static and dynamic logic.

We propose a novel approach to extraction of functional regularity, where the set of all possible

templates is generated automatically for the input circuit under a set of simplifying but practical

assumptions discussed in Section 3. These assumptions signi�cantly reduce the number of templates
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addressed to O(V 2), where V is the number of components of the input circuit. Our approach then

covers the circuit by selecting a subset of this set of templates based on various criteria which

correlate to area, performance and design e�ort. We demonstrate that a wide range of e�cient

covers are obtained from this set of O(V 2) templates. The major contributions of this paper

are two algorithms that generate a su�ciently large set of templates for a given circuit, one to

generate templates with a tree structure, and the other to generate a special class of multi-output

templates, where every output of the template lies in the transitive fanin of a particular output. We

will present the e�ectiveness of our approach by identifying regularity in several circuits, including

several ISCAS benchmarks, from their high-level descriptions. The high-level structure of these

ISCAS circuits have been identi�ed earlier by reverse engineering [9, 19] to help in various CAD

applications, such as high-level test generation and hierarchical timing analysis.

Our extraction approach has numerous interesting and useful extensions. We can identify multi-

output bit slices of more general structure. We can represent the templates hierarchically, which

enhances users' understanding of the circuit and provides user the exibility to work at the desired

level of hierarchy. In the event that a template is speci�ed, our approach can be used to generate

its all possible instances, either complete or partial, in the input circuit.

The rest of the paper is organized as follows. Section 2 formulates the regularity extraction

problem in terms of two subproblems | template generation and then circuit covering by these

templates. The complexity of generating the complete set of templates of a circuit is discussed

in Section 3. Section 4 discusses the algorithm for generation of templates with a tree structure.

Section 5 extends the algorithm to a special class of multi-output templates. The heuristic technique

of covering the circuit by templates is discussed in Section 6. Several interesting extensions of

our template generation algorithm are described in Section 7. We extract regularity of various

benchmark circuits and present the results in Section 8. Section 9 concludes with some future

extensions.

2 Problem Formulation

We �rst present a graph-theoretical formulation of the problem of regularity extraction. The input

to regularity extraction is a circuit C composed of logic components that can be either small logic

blocks, such as AND gates, OR gates, multiplexors and latches, or arithmetic blocks, such as adders

and shifters. The input circuit C is usually described using an HDL. We represent C by a directed

graph G(V;E), where the nodes in V correspond to the logic components or the primary inputs

of C, and the edges in E correspond to the interconnection among the components and primary
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Figure 3: Representing the logic functions of circuit components in G: (a) 2-to-1 mux; (b) AND-OR gate.

inputs of C. The set V can be partitioned into two subsets I and L, which correspond to the sets of

primary inputs and logic components, respectively. The set O of primary outputs is a subset of L.

We represent the logic functions of components of C in G by a pair of functions. We �rst de�ne a

logic function l : L! f1; ::; l0g, where l0 is the total number of distinct types of logic functions. If

l[u] = l[v], then u and v correspond to the same logic function, e.g. a 2-to-1 multiplexor. Similarly,

we associate an index k : E ! f1; ::; k0g with every edge in E, where k(u1; v) = k(u2; v) implies

that the two incoming edges of v are equivalent. Figure 3a shows a multiplexor whose input edges

have all distinct indices, while the AND-OR gate of Fig. 3b has four edges assigned to only two

indices. The graph G of the multiplier of Fig. 2 is shown in Fig. 4.

A subgraph of G is a graph Gi(Vi; Ei) such that Vi � V and Ei � E. Vi is partitioned into Ii

and Li. The set Oi of primary outputs is again a subset of Li. A subgraph of G corresponds to a

subcircuit of C. We consider only those subgraphs which satisfy the condition that if v 2 Li, then

u 2 Ii [ Li for every node u connected to v by an edge (u; v) in G. We call the subgraphs which

satisfy this condition feasible subgraphs of G, since they correspond to meaningful subcircuits of C.

From here on, a subgraph will imply a feasible subgraph.

We consider two subgraphs Gi and Gj functionally equivalent, if and only if (a) they are iso-

morphic, i.e. there exists a one-to-one mapping � between Vi and Vj [10], (b) the logic functions

of corresponding nodes are same, i.e. l[v] = l[�[v]], and (c) the indices of corresponding edges are

also the same, i.e. k[u; v] = k[�[u]; �[v]]. We call the equivalence class of this relation a template.

Given any set S of subgraphs of G, the subgraphs can be partitioned into m templates, S1; : : : ; Sm,

where a template Si contains jSij subgraphs. We estimate the area of a subcircuit that corresponds

to the template Si by area[Si] =
P

v2Li
a[l[v]], where a[j] is the area estimate of a node of logic

function j.

A cover of G is a set C(G) = fG1; : : : ; Gng of feasible subgraphs of G that satis�es the following
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conditions:

1. Every node of G belongs to at least one subgraph in C(G), i.e. V � V1 [ : : : [ Vn.

2. If a node v is a primary input of a subgraph, then it is either a primary input of G or an

output of another subgraph, i.e. for all v 2 Ii, v 2 I [O1 [ : : : [On.

The problem of regularity extraction can now be stated as follows.

Regularity Extraction Problem: Given a circuit represented by a graph G(V;E), �nd a cover

C(G) = fG1; : : : ; Gng, which is partitioned into m templates S1; : : : ; Sm, such that the number n

of subgraphs and the overall area of the templates, given by A[C] =
Pm

i=1 area[Si], are maximized.

2

If we assume that every template is synthesized and laid out only once for all its subgraphs, then

maximizing the number of subgraphs will reduce the overall design e�ort. Maximizing A[C] will

improve the overall area and delay, since larger templates would lead to better optimization during

subsequent technology mapping and physical design stages. The above two objectives are, however,

conicting, since a large template usually has only a few subgraphs, while a smaller template has a

large number of subgraphs. For example, the cover of multiplier shown in Fig. 2 has two templates

with a total of 7 subgraphs and an area A[C] of 13 units, assuming every component has a unit

area. On the other hand, a trivial cover of three templates | an AND gate, SUM and CARRY

functions, has a total of 40 subgraphs and an area A[C] of three units.
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The problem of �nding an optimal cover is NP -complete, even when the subgraphs are selected

from a given set. Here, the problem is even more complex, since there is no such set of subgraphs

for selecting the cover. We reduce the complexity of regularity extraction by decomposing it into

two steps, where a set of templates is �rst generated, followed by selecting a subset of the template

set to cover G. We state these two sub-problems below.

Template Generation Problem: Given a circuit represented by a graph G(V;E), generate the

complete set of templates where each template has at least two subgraphs. 2

The problem of generating all templates of G is similar to enumerating the equivalence classes

of subgraphs of G under isomorphism, which is inherently di�cult. As mentioned earlier, prior

techniques do not address this problem due to its high complexity. However, we present a few

simplifying assumptions in the next section, which will reduce the number of templates addressed

to within V 2. (These assumptions will be justi�ed in the context of regularity extraction.) We

will later demonstrate that this set of at most V 2 templates will lead to e�cient covers for various

datapath circuits.

Graph Covering Problem: Given a circuit represented by a graph G(V;E) and its set ST (G) of

templates, �nd a cover C(G;ST ) = fG1; : : : ; Gng of G, which is partitioned into m(� p) templates

S1; : : : ; Sm, such that the number n of subgraphs and the overall area of the templates, given by
Pm

i=1 area[Si], are maximized. 2

The graph covering problem is the similar to the binate-covering problem [5, 4], which has been

well studied in various CAD areas, including regularity extraction [17].

3 Complexity of template generation

We now discuss the complexity of the template generation problem, and present several assumptions

to make it tractable. We �rst show by an example that the number of templates of G(V;E) can be

O(2V ). Consider a graph G1(V1; E1) which is a binary tree with n nodes such that every internal

(non-leaf) node in L1 has the same logic function of l[v] = 1, and every node v at the leaf level has

a distinct function l[v] = 2; : : : ; n+1
2
; see Fig. 5. We can easily identify 2

n+1

2 subgraphs of G1, where

each subgraph contains all internal nodes of L1, but only a subset of n+1
2

leaf nodes. Thus, the

number of subgraphs of G1 is O(2
V ). Now consider a graph G2 which consists of two unconnected

copies of G1. The number of templates of G2 is then O(2V ), where each template has at least two

subgraphs. We now make the following assumption to reduce the number of templates addressed

by the template generation problem. We represent the set of templates of G addressed here by ST ,

and the corresponding set of subgraphs by S.
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Assumption 1. Restrict the set S of subgraphs of G to include only those subgraphs of G which

are not a subgraph of any other subgraph in S and which have at least one distinct equivalent

subgraph in S. 2

The basis for the above assumption is that we would like to extract the maximum degree of

regularity. Using Assumption 1, the set S of G2 contains only two subgraphs, both of which

are equivalent to G1. Thus, G2 has only one template. We can then generate the templates for G1,

thus resulting in a hierarchy of templates.

The number of templates can still be O(2V ) even after considering Assumption 1. Consider the

graph G0 of Fig. 6a composed of two unconnected trees, where the incoming edges of every node

have the same index k. It has two templates shown in Fig. 6b. Now, consider the graph G of

Fig. 6c which is composed of two unconnected binary trees such that all the internal nodes have

the same function l[v] = 1, while the leaf level is composed of one of the two subgraphs, G1 or G2.

The number of templates of G is O(2V ), since every pair of subgraphs G1 and G2 can be matched

using either of the templates of Fig. 6b.

We make the following assumption that does not allow permuting the incoming edges of a node

even though the two edges (u1; v) and (u2; v) have the same index k[u1; v] = k[u2; v]. For example,

the two input edges of a node corresponding to an OR gate would be assigned di�erent indices,

even though they are equivalent.

Assumption 2. For every node v of G with incoming edges from nodes u1, : : :, uf , every edge is

assigned a unique index of k[ui; v] = i, for all 1 � i � f . 2

The above assumption will rule out S2 (Fig. 6b) as a template for the graph of Fig. 6a. As a result,

the graph G0 of Fig. 6c also has a single template. The justi�cation for the above assumption is

that G is constructed from an HDL description of the input circuit C, which ensures that nodes
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with the same function are de�ned identically. For example, the HDL assignment statement " for

i = 4 to 6 f x[i] = a[i]� b[i] + c[i]� d[i] g" will correspond to a set of three nodes

with the same logic function which are transformed identically in building G; see Fig. 7. Therefore,

the above assumption does not rule out the regularity inherent in the HDL description.

4 Generation of tree templates

A tree template, as the name implies, is a template, which has a single output and no internal

reconvergence. We present an algorithm for generating all tree templates of a given graph G under

Assumptions 1 and 2. The number of tree templates is reduced to within V 2 under these two
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assumptions, which will directly follow from the description of the algorithm. The upper bound of

V 2 makes the enumeration of such templates feasible.

We �rst explain a scheme to compactly store the set of tree templates, assuming that the

fanin of nodes of G are bounded. The templates are stored in a set ST = fS1; : : : ; Smg, where

every template Si is a class of functionally-equivalent subgraphs. Instead of storing each template

completely, we store a template as a set of hierarchically organized templates. A template Si can

be completely de�ned by the logic function of its root node, denoted by root fn[i], and the list

of templates children templates[i] = fT1; : : : ; Tfg to which the subgraphs rooted at the f fanin

nodes of the root node belong to. For example, Fig. 8 illustrates the templates of the graph

G0 shown earlier in Fig. 6a. The template S8 can be precisely de�ned by root fn[8] = 1 and

children templates[8] = fT6; T7g. We also reduce the space required for storing the subgraphs of

each template by simply storing the root node of the subgraphs in the list root nodes[i]. In case of

the template S8 in Fig. 8b, root nodes[8] = fo; pg. It can be shown easily that the subgraphs of a

template Si can be precisely reconstructed using root fn[i], and the lists children templates[i] and

root nodes[i]. Thus, the storage requirements of a template is O(f+V ), or O(V ) for bounded-fanin

graphs.

The algorithm for generation of tree templates is presented in Fig. 9. For e�ciency reasons, we

sort the template list ST by a composite key of size f+1, de�ned as key = froot fn; children templatesg.

We explain the algorithm using the example of Fig. 8. First the nodes of G are topologically sorted.

Then, for every pair of nodes, the function Largest Template generates a template with two sub-

graphs, once rooted at each node. Largest Template compares the logic function of the two nodes,

and then constructs the list of children templates. The template Sm, thus generated, is compared

with previously-generated templates by a binary search on the list ST using key. If Sm is equiv-

alent to an existing template Sk, then its subgraphs are added to Sk; otherwise Sm is stored in

ST as a new template. For the graph of Fig. 8a, �rst the trivial templates S1; : : : ; S4 are gener-

ated. Then, from the remaining nodes fa; b; c; d; o; pg, template S5 is generated by comparing a

and b, and S6 is generated by comparing a and c. The template obtained by comparing a and d

is found to be equivalent to S5, so no new template is created, but d is stored in the root nodes

of S5. The remaining two templates, S7 and S8, are generated by comparing the node pairs, (b; d)

and (o; p), respectively. Largest Template returns a NULL template, in the case of remaining node

pairs. Note that every template has only two subgraphs, except S5 with six subgraphs given by

root nodes = fa; b; c; d; o; pg.

The execution time of levelizing a graph is O(V + E) [3], or O(V ) for bounded-fanin graphs.

The function Largest Template takes a constant time, since the fanin of nodes is assumed to be
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01 Generate Templates(G(V;E))
/� A tree template Si is completely de�ned by (i) root fn[i] | logic function of the root node;
(ii) children templates[i] | list of children templates that form Si; (iii) root nodes[n] | a list of the
root nodes of the subgraphs of Si (all the subgraphs of Si can be constructed by these three �elds) �/

02 begin

03 topologically sort the nodes of G as fv1; : : : ; vNg;
04 ST := �; /� ST stores the list of templates �/
05 m := 0; /� m is the number of templates generated so far �/
06 template[v1 : : : vN ; v1 : : : vN ] := 0; /� template[vi; vj ], if non-zero, gives the index of the template

to which the functionally-equivalent subgraphs rooted at nodes vi and vj belong to �/
07 for i = 1 to N

08 for j = i+ 1 to N

09 m := m+ 1; /� the new template will be stored in Sm �/
10 Sm := Largest Template(vi, vj); /� generates a template with two largest functionally-

equivalent subgraphs Gi and Gj rooted at vi and vj , respectively �/
11 if Sm 6= �
12 k := Find Equivalent Template(Sm, ST ); /� �nd Sk in ST equivalent to Sm �/
13 template[vi; vj ] := k;
14 if k = m /� Sm is a new template �/
15 ST := ST [ fSmg; /� add Sm to ST , such that it remains sorted �/
16 else

17 root nodes[k] := root nodes[k] [ fvi; vjg; /� add, only if not present already �/
18 m := m� 1;
19 return ST ;
20 end

21 Largest Template(u, v)
/� generates the largest trees rooted at nodes u and v that are functionally equivalent �/

22 if l[u] 6= l[v] /� if u and v have di�erent logic functions, then there is no template �/
23 return �;
24 else

25 root fn[m] := l[u]; /� setting the �elds of template Sm �/
26 for i = 1 to f do /� both u and v have f fanin nodes, fu1; : : : ; ufg and fv1; : : : ; vfg, each �/
27 if ui and vi have a single fanout each
28 add template[ui; vi] to children templates[m];
29 root nodes[m] := fu; vg; /� Sm has only two subgraphs, Gu and Gv �/
30 return Sm;

31 Find Equivalent Template(Sm, ST )
/� ST is a list fSi; : : : ; Sjg of templates sorted by key = (root fn; children templates).
This function �nds the template in ST , equivalent to Sm, by performing a binary search �/

32 if ST = �
33 return m

34 if key[m] < key[ i+j
2
] /� check in the �rst half of ST �/

35 return Find Equivalent Template(Sm, fSi; : : : ; S i+j

2
�1
g);

36 else if key[m] > key[ i+j
2
] /� check in the second half of ST �/

37 return Find Equivalent Template(Sm, fS i+j

2
+1
; : : : ; Sjg);

38 return i+j
2
; /� S i+j

2

and Sm are equivalent �/

Figure 9: Algorithm for generating the complete set of tree templates of G under Assumptions 1
and 2.

12



bounded. The function Find Equivalent Template takes O(logV ) for the binary search on the list

ST of at most V 2 templates [3]. Insertion of a template Sm in ST (line 15) also takes in O(logV )

time, since ST is already sorted. The above functions are performed for every node-pair, resulting

in the overall time complexity of Generate Templates of O(V 2:logV ). We store the root fn and

the list children templates for every template, which results in a memory requirement of O(V 2).

The subgraphs of the templates are stored using a list of their root nodes in root nodes. Since the

maximum number of subgraphs generated is O(V 2), the storage required for the subgraphs is also

O(V 2). Thus, the overall storage complexity is O(V 2).

5 Generation of multi-output templates

The template generation algorithm of Fig. 9 gives excellent covers for sparse graphs, but it might

not perform well for graphs with a high number of nodes with multiple fanout. If we apply this

algorithm to the 4 � 4 multiplier shown as a graph in Fig. 4, then three trivial tree templates

| AND gate, CARRY and SUM functions, are obtained. We now extend the algorithm for tree

templates to multi-output templates. We restrict ourselves to only those multi-output subgraphs,

whose every output lies in the transitive fanin of a particular output. We refer to this particular

output as the principal output of the subgraph, and such a subgraph (template) as a single principal-

output subgraph (template) or a single-PO subgraph (template). The remaining outputs are called

secondary outputs. For example, the two subgraphs shown in Fig. 10a of the graph of Fig. 4 are

single-PO graphs with P5 and P4 as the respective principal outputs.

We briey analyze some interesting properties of the class of single-PO graphs (SPOGs). A

SPOG is a directed graph which has at least one path from every output to the principal output.

Thus, SPOGs can have internal reconvergence as well as cycles, and can have any number of outputs.

Figure 11 shows the relation of SPOGs to widely-studied classes of circuit graphs | directed-acyclic

graphs (DAGs), fanout-free cones (FFCs), leaf-DAGs and trees1. SPOGs can be used to represent

sequential circuits as well, since they allow cycles, unlike DAGs. Besides regularity extraction, there

can be other useful applications of SPOGs; circuit decomposition in technology mapping is one such

example. A circuit graph is usually decomposed into trees prior to technology mapping. However,

for a circuit graph G with V nodes and O primary outputs, the number of trees can be as high as

V , which might result in a poor mapping solution. An alternate decomposition is in to O SPOGs,

where O is usually much smaller than V . For example, the multiplier of Fig. 4 is decomposed into

as many as 40 trees, but can be decomposed into only 8 SPOGs.

1A DAG is a directed graph with no cycles, a fanout-free cone is a DAG with a single output, a leaf-DAG is a
fanout-free cone where only leaf nodes can have multiple fanout.
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The main advantage of using single-PO subgraphs in regularity extraction is that despite their

complex structure, the number of such subgraphs of G is restricted to V 2 under the Assumptions

1 and 2, similar to the tree case. However, the generation of single-PO subgraphs (and templates)

requires more time and memory, which is analyzed next. The storage scheme used earlier for tree

templates cannot be extended to single-PO templates. A tree template was earlier represented by

a list of children templates, since these children templates are non-overlapping. However, in case

of single-PO templates, the children templates can overlap with each other. Figure 10c shows the

template S3 which contains the two subgraphs of Fig. 10a-b. S3 has two children templates, S1 and

S2, which have overlapping nodes, such as c1, f1 for subgraph GP5 and c2, f2 for subgraph GP4.

Therefore, S3 cannot be completely speci�ed just by the list of its children templates. Instead, we

have to specify every template individually.

We represent a single-PO subgraph Gu by a list of its nodes, nodelist, which stores the nodes in

a depth-�rst search order. The motivation for using a depth-�rst order is that it is unique for all iso-

morphic subgraphs. The subgraph of template S1 in GP5 has nodelist = fa1; b1; c1; d1; e1; f1; g1g.

With every node in nodelist, we also store its fanin and fanout nodes as well. Thus, memory

required to store a subgraph is O(V ), since every node requires a �xed storage for bounded-fanin

graphs.

We replace the two functions in the template generation algorithm of Fig. 9 by the corresponding

functions in Fig. 12 in order to generate the complete set of single-PO templates. We explain these

functions with the aid of the example of Fig. 10. Prior to the call Largest Template(P5; P4), the

template S1 is already generated with two subgraphs, Ga1 and Ga2 . Similarly, S2 is also generated

with two subgraphs, Gh1 and Gh2 . First, nodelist[GP5] and nodelist[GP4] are set as fP5g and

fP4g, respectively (lines 05-06). The nodelists of Ga1 and Gh1 (Ga2 and Gh2) are then added to

the nodelist of GP5 (GP4). The nodelists after lines 07-09 are given below.

nodelist[GP5] = fP5; a1; b1; c1; d1; e1; f1; g1; h1; i1; c1; d1; e1; f1g

nodelist[GP4] = fP4; a2; b2; c2; d2; e2; f2; g2; h2; i2; c2; d2; e2; f2g

There can be multiple paths from a node w to the root node v through di�erent incoming edges

of v. As a result, w occurs multiple times in nodelist[Gv]. For example, c1 is connected to P5

through the edges (a1; P5) and (h1; P5) in Fig. 10a, and hence, it occurs twice in the nodelist[GP5].

We de�ne a list path[w; v] which contains the indices of the incoming edges of v through which w

is connected to v, e.g. path[b1; P5] = f1g, while path[c1; P5] = f1; 2g. The path lists for all nodes

of the subgraph Gu and Gv, rooted at nodes u and v, are evaluated in lines 10-12.
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/� ST stores the set of all templates fS1; : : : ; Smg. Every subgraph Gu of a template Si
is represented by a node-list nodelist[Gu] stored in the depth-�rst order �/

01 Largest Template(u, v)
/� generates the largest single-PO subgraphs rooted at nodes u and v that are equivalent �/

02 if l[u] 6= l[v]
03 return �;
04 else

05 nodelist[Gu] := fug; /� the root node is always the �rst node in nodelist �/
06 nodelist[Gv] := fvg;
07 for i = 1 to f do /� both u and v have f fanin nodes, fu1; : : : ; ufg and fv1; : : : ; vfg, each �/
08 add nodelist[Gui

] at the end of nodelist[Gu];
09 add nodelist[Gvi ] at the end of nodelist[Gv];
10 for w1 2 nodelist[Gui

] and w2 2 nodelist[Gvi ]
11 add i to path[w1; u]; /� there is a path from w1 (w2) to u (v) through the incoming �/
12 add i to path[w2; v]; /� edge of u (v) with index i �/
13 for w1 2 nodelist[Gu] and w2 2 nodelist[Gv]
14 if path[w1; u] 6= path[w2; v]
15 delete all copies of w1 (w2) from nodelist[Gu] (nodelist[Gv])
16 else if path[w1; u] has more than one elements /� here, path[w1; u] = path[w2; v] �/
17 delete all remaining copies of w1 (w2) from nodelist[Gu] (nodelist[Gv])
18 Sm := fGu; Gvg;
19 return Sm;

20 Find Equivalent Template(Sm, ST )
/� ST is a list of k templates, S1; : : : ; Sk.
This function �nds the template in ST , equivalent to Sm, if any; otherwise, returns m �/

21 for i = 1 to k

22 if nodelist[Si] = nodelist[Sm]
23 return i;
24 return m;

Figure 12: Algorithm to generate the complete set of single-PO templates of G under Assumptions
1 and 2.
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We then pairwise compare the nodes in nodelist of Gu and Gv (line 13). If the path lists of

the corresponding nodes are di�erent, then these nodes have to be removed from the respective

subgraphs (lines 14-16). Otherwise, if the path lists of the corresponding nodes are the same and

have multiple indices, then the remaining copies of these nodes are removed from their respective

nodelist's. For example, the second occurrence of the node c1 (c2) in the graph GP5 (GP4) is

deleted. The �nal nodelists of GP5 and GP4 (line 21) are given below.

nodelist[GP5] = fP5; a1; b1; c1; d1; e1; g1; h1; i1g

nodelist[GP4] = fP4; a2; b2; c2; d2; e2; g2; h2; i2g

The function Find Equivalent Template compares a template with every other template in the

set ST by matching corresponding nodes in the two nodelist's. Since the depth-�rst order of the

nodes of a graph is unique, two graphs are isomorphic if and only if the corresponding nodes in

their nodelist's are the same in terms of their logic functions as well as their lists of fanouts.

We now analyze the complexity of the algorithm of Fig. 12. The nodelist created after line 12

in Largest Template is O(f � V ), or O(V ) for bounded fanin graphs. The unmatched or duplicate

nodes are deleted from the nodelist by a single traversal (lines 13-17), which also takes O(V ) time.

Thus, the time complexity of Largest Template is O(V ). The comparison of two nodelist's (line

24) in the function Find Equivalent Template takes O(V ) time, and is called for every template

in ST resulting in a time complexity of O(V 3). Finally, since these two functions are called for

every node-pair (line 07-08, Fig. 9), the overall time complexity is O(V 5). As discussed earlier,

every subgraph requires a storage of O(V ). Since the maximum number of subgraphs generated is

V 2, the storage complexity is O(V 3). If the number of single-PO templates of G are bounded by

S, then the overall time and space complexity are given by O(S2 � V ) and O(S � V ), respectively.

6 Covering of graph by templates

So far, we have presented algorithms to generate a set ST of templates of G. ST can be either a

set of all tree templates or a set of all single-PO templates of G under the Assumptions 1 and 2.

Let S denote the set of all subgraphs in the templates stored in ST . Now, we present a solution to

the graph covering problem, where given G and ST , the objective is to �nd a subset C(G;ST ) of

the set S of all subgraphs subgraphs that forms a cover of G.

Since a large set S of subgraphs are generated to choose the cover and the binate covering

problem is inherently di�cult, we focus on e�cient heuristics to solve the covering problem. Our
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Figure 13: The cover of the 4� 4 multiplier of Fig 2 obtained using LFF heuristic on the set of single-PO
templates. The nodes shown uncovered are covered by single-node (trivial) templates.

approach, at every step, selects a template Si with the maximum objective function out of all

templates in ST , deletes all nodes of G that belong to the non-overlapping subgraphs of Si, and

then generates the set ST of templates for the remaining graph. This step is repeated until either

all nodes of G are covered, or if ST is found to be NULL. If some nodes are left uncovered and ST

becomes NULL, then we store the remaining nodes in a template with a single subgraph. (In case

of datapath circuits, this template will correlate to the control logic.)

We use the following two heuristics for graph covering based on the objective function used for

selecting templates from the set ST .

1. Largest-Fit-First (LFF) heuristic: Select the template Si with the the maximum area area[Si]

(de�ned in Section 2).

2. Most-frequent-Fit-First (MFF) heuristic: Select the template Si with the maximum number

jSij of subgraphs.

Usually, these two heuristics give di�erent covers, since a template with a large area has few

subgraphs, and vice-versa. The cover of the 4 � 4 multiplier of Fig. 4 obtained using the LFF

heuristic is shown in Fig. 13. (The cover of two templates shown in Fig. 2 cannot be obtained,

since our algorithm is restricted to single-PO templates.) If the MFF heuristic is used, then the

cover of three small templates | AND gate, CARRY and SUM functions, is obtained.
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Figure 14: The template hierarchy of the circuit of Fig. 1 obtained by our extraction approach.

7 Applications of template generation

We now discuss several interesting applications of the template generation algorithm, which further

generalizes our regularity extraction methodology.

Hierarchical representation of regularity: Consider the two covers for the circuit graph of

Fig. 1 generated by our extraction approach | one with two subgraphs of S3 and S1 each, and

another one with two subgraphs of S2 and four of S1. The fact that S3 is composed of S1 and S2

is not captured by these two covers. We can compactly represent these two covers by identifying

the hierarchy of templates. Earlier in the case of tree templates, we hierarchically stored a template

as a set of children templates. We now generalize this notion of template hierarchy. For a given

G, every template is either hierarchically composed of other templates or is a leaf template. Let

S1; : : : ; Sm be the templates in a cover generated by the regularity extraction approach. We can

generate the complete template hierarchy by recursively extracting the regularity from the graph

composed of S1; : : : ; Sm, until we are left with leaf templates only. The templates in the two covers

of Fig. 1 discussed above can be compactly represented by the hierarchy shown in Fig. 14. In

general, any set of covers of G can be represented by a template hierarchy, which allows the user

to select the most desirable cover by descending the hierarchy.

Generating subgraphs for a given template: Given a template S, we can modify the template

generation algorithm to identify all subgraphs of S as well as its children templates. For example,

if the user provides the template S3 for the circuit in Fig. 1, then all subgraphs of S3 as well as its

children templates S1 and S2 can be generated. The only modi�cation to the template generation

algorithm is that function Largest Template (line 10, Fig. 9) should be called for every node-pair

(vi; vj), where vi and vj belong to G and S, respectively. The covering step can be generalized,
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Figure 15: Larger templates can be identi�ed by creating a dummy output bus for a datapath circuit { (a)
a cover of two single-PO templates; (b) a cover of a single template using the heuristic of a single dummy
output bus.

such that G is covered by a mix of automatically-generated and user-supplied templates.

General multi-output templates: Usually the primary outputs of datapath circuits are speci�ed

by busses. We can group primary outputs with the same bus index using a dummy node, thus

creating a dummy bus of the same width. For example, the two output busses x[2::0] and y[2::0]

of the circuit of Fig. 15 can be grouped into a single dummy bus. Using the heuristic of adding

a dummy output bus, our template generation algorithm can result in a general multi-output

template, as shown in Fig. 15b.

8 Experimental results

The only input to our regularity extraction technique is the graphG of a circuit C. The input circuit

can be described in any format, such as an HDL or the gate-level blif format [7], from which G

can be constructed in a straightforward manner. We extract the regularity for a variety of circuits,

including adders, 74X series circuits [18] and ISCAS benchmark circuits. The ISCAS benchmarks

are already described in the blif format. We have written gate-level descriptions for adders and

74X circuits from their functional descriptions. We obtained a set of four covers for each circuit,

depending on whether tree templates or single-PO templates are generated, or whether the LFF or

MFF covering heuristic is used. In fact, other covers can be obtained by using alternate covering

heuristics.
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Figure 16: A 16-bit ripple carry function illustrating the template hierarchy.

We �rst analyze some interesting covers for several circuits, and then summarize the results for

the complete set of circuits.

Ripple-carry function: Figure 16 shows a 16-bit ripple-carry function. A cover of a single

template S1 with two instances is obtained by using the LFF heuristic on the set of single-PO

templates. If only the tree templates are considered, then the cover of a smaller template S4 with

16 instances is obtained. In fact, we recursively extract the regularity from template S1 to get a set

of covers given by fT1(2)g, fT2(4)g, fT3(8)g, and fT4(16)g, where fT i(ni)g implies a cover of ni

instances of template Si. Thus, various covers can be compactly described by a template hierarchy.

Carry-lookahead function: Figure 17 shows a 16-bit carry-lookahead logic block which is realized

using sub-blocks of four bits each. The largest single-PO template is S1 with two instances, one

rooted at C8 and the other at C16. Selecting S1 results in the cover fT1(2); T2(4); T3(4); T4(4)g

shown in Fig. 17. Further, S1 can be shown to be composed of just one template with two instances.

Thus, the algorithm is able to detect multi-bit regularity e�ciently.

74181 4-bit ALU: The 74181 4-bit ALU of Fig. 18a [9] is found to have a single-PO template

S1 with four instances which cover most of the circuit. The carry-lookahead logic is, however, not

covered by any template.

7485 magnitude comparator: The gate-level realization of 74L85 magnitude comparator [18],

shown in Fig. 18b, is composed of two carry-lookahead modules. The cover has two templates |

a template composed of an AND gate and a carry-lookahead module, and a template with an XOR

gate. The uncovered logic of the AND gate is represented by a template with a single instance.

c499 (c1355): This ISCAS-85 benchmark circuit of Fig. 19, described in [9], is a single-error-

correcting circuit which reads in a 32-bit bus, generates a set of eight syndrome lines, and then

corrects the appropriate bit in the output bus. The largest single-PO template is shown to cover all

of the syndrome generation logic and a part of the remaining error correction logic. The remaining

circuit is covered by �ve templates. The c1355 benchmark implements the same logic as c499,

except that each XOR gate is represented by a set of four NAND gates. As expected, we get the
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same largest template as for c499.

c2670: This ISCAS benchmark is an ALU with two identical comparator subcircuits [19] apparently

used for fault-tolerant reasons. As expected, we are able to identify two instances of a template

which corresponds to the comparator of 12-bit inputs.

Finally, we summarize the results of regularity extraction on the above set of circuits. Tables I

and II give the covers obtained by applying the covering heuristics on the sets of tree and single-PO

templates, respectively. We de�ne regularity index of a cover C(G) as the area of all templates in

the cover, given by
Pm

i=1 area[Si], as a percentage of the total area of G, given by
Pm

i=1 jSij�area[Si],

The regularity index correlates with the reduction in the design e�ort, assuming that a template

is synthesized only once for all its subgraphs. We can compare the quality of covers using the

regularity index and the area of the largest template. A small regularity index implies that a

low e�ort is needed for synthesis and layout of the circuit, while a large template implies that a

better optimization can be achieved during subsequent synthesis and layout stages. The results

indicate that the LFF heuristic generates covers with large templates, e.g., the two instances of

the largest single-PO template of c1355 together account for two-thirds of the overall area. Such

covers have a high regularity index which can be reduced by hierarchically extracting regularity.

On the other hand, covers obtained using the MFF heuristic have a small regularity index as well

as small templates. Figure 20 shows the variation in the regularity indices for the covers of some
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benchmark circuits. In fact, alternate covers can be obtained by using a combination of LFF and

MFF heuristics, or other covering heuristics.

LFF heuristic MFF heuristic
No. of # templates Largest Regularity # templates Largest Regularity

Ckt. gates (# subgraphs) template index (# subgraphs) template index
ripple-carry 64 1(16) 6.3 6.3 2(64) 1.3 3.1
16-bit CLA 48 6(40) 6 17 6(48) 2 13
74181 41 4(17) 7.3 33 5(21) 7.3 32
7485 15 3(7) 33 26.7 4(15) 6.7 26.7
4-bit mult. 40 4(40) 2.5 10 4(40) 2.5 10
c432 160 9(89) 3.1 11.9 7(159) 0.6 5
c499 202 7(66) 8.5 17 6(202) 0.5 3
c880 383 18(178) 3.6 15.1 9(383) 0.3 2.3
c1355 546 8(298) 3.1 5.1 7(546) 0.2 1.3
c1908 880 18(425) 0.8 5.2 12(879) 0.1 1.5
c2670 1193 23(604) 2.7 11.6 12(1193) 0.1 1
c3540 1669 44(652) 3.9 21.2 15(1669) 0.1 0.9
c5315 2307 37(845) 0.6 7.8 15(2307) 0.1 0.6

Table I: Covers composed of tree templates obtained using largest-�t-�rst and
most-frequent-�t-�rst heuristics.

LFF heuristic MFF heuristic
# templates Largest Regularity # templates Largest Regularity

Ckt. (# subgraphs) template index (# subgraphs) template index
ripple-carry 1(2) 50 50 2(64) 1.6 3.1
16-bit CLA 4(14) 38 44 6(48) 2 13
74181 2(5) 22 32 5(21) 7.3 32
7485 3(7) 33 26.7 4(15) 6.7 26.7
4-bit mult. 6(16) 25 45 4(40) 2.5 10
c432 9(58) 7.5 24.4 7(159) 0.6 5
c499 6(42) 29.7 36.1 6(202) 0.5 3
c880 19(127) 12.3 35.2 9(383) 0.3 2.3
c1355 7(74) 31.3 35.5 7(546) 0.2 1.3
c1908 27(171) 5 44 12(879) 0.1 1.5
c2670 26(262) 15.5 43.7 12(1193) 0.1 1
c3540 38(224) 28.8 43.4 15(1669) 0.1 0.9
c5315 30(264) 17.3 40.4 15(2307) 0.1 0.6

Table II: Covers composed of single-PO templates obtained using the two covering heuristics.

9 Conclusions

We have presented a comprehensive approach to extract regularity inherent in datapath circuits.

Our approach reduces the problem complexity by �rst generating a set of templates and then

selecting its subset to cover the input circuit. The major contributions of this paper are the novel
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Figure 20: The regularity indices of the covers obtained for some ISCAS benchmarks.

algorithms developed to generate two special classes of templates | the class of tree templates

and the class of single-PO templates. Under a few practical assumptions, our algorithm generates

the complete set of these classes of templates, which is key to achieving e�cient covers. These

assumptions have been justi�ed in the case of circuits described using behavioral or structural

level HDL. We have obtained a variety of covers for several benchmark circuits by using two

di�erent heuristics for selecting templates to cover the graph. We have also demonstrated that the

covers generated by our approach help in understanding the underlying structure of the circuits.

The identi�cation of regularity would result in a signi�cant reduction of e�ort in the subsequent

synthesis and layout design stages. A hierarchical representation of the regularity in a circuit can

also be obtained by recursive application of our approach. Given a user-de�ned template, all its

subgraphs can be easily generated, thus providing the feature of covering the circuit by a mix of

user-de�ned and automatically-generated templates.

We presented a heuristic of grouping output busses into a single bus, that allows us to identify

general multi-output templates for some circuits. A useful extension to our extraction approach is

to generate general multi-output templates for any given circuit, but the number of such templates

is not restricted by V 2 under the two assumptions presented in this paper. Such an algorithm

would lead to more e�cient covers, such as the cover of just two templates for the 4� 4 multiplier

(Fig. 2). Furthermore, our approach explicitly enumerates the templates of a circuit, which raises

the following question: is it possible to consider all the templates in the covering step without

explicitly enumerating the set of templates generated by our algorithm?
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