
1

CLIM: A Cross-level Workload-aware Timing
Error Prediction Model for Functional Units

Xun Jiao, Abbas Rahimi, Yu Jiang, Jianguo Wang, Hamed Fatemi, Jose Pineda de Gyvez,
and Rajesh K. Gupta

Abstract—Timing errors that are caused by the timing violations of sensitized circuit paths, have emerged as an important threat to the
reliability of synchronous digital circuits. To protect circuits from these timing errors, designers typically use a conservative timing
margin, which leads to operational inefficiency. Existing adaptive approaches reduce such conservative margins by predicting the
timing errors in advance and adjusting the timing margin adaptively. However, these error prediction approaches overlook the impact of
input workload (i.e., operands) on path sensitization, thereby resulting in a loss of accuracy. The diversity of input operands leads to
complex path sensitization behaviors, making them hard to represent in timing error modeling.
In this paper, we propose CLIM, a cross-level workload-aware timing error prediction model for functional units (FUs). CLIM predicts
whether there are timing errors in FU at two levels: bit-level and value-level. At the bit level or value level, CLIM predicts each output bit
or entire output value as one of two classes: {timing correct, timing erroneous} as a function of input workload and clock period,
respectively. We apply supervised learning methods to construct CLIM, by using input operands, computation history and circuit
toggling as input features, as well as outputs’ timing classes as labels. These training data are collected from gate-level simulations
(GLS) of post place-and-route designs in TSMC 45nm process. We evaluate CLIM prediction accuracy for various FUs and compare it
with baseline models. On average, CLIM exhibits 95% prediction accuracy at value-level, 97% at bit-level, and executes at a rate 173X
faster than GLS. We utilize CLIM to analyze the value-level and bit-level reliability of FUs under random and real-world application
workloads. At value-level, CLIM-based reliability estimation is within 2.8% deviation on average of detailed GLS ground truth. At
bit-level, we introduce the concept of bit-level reliability specification of error-tolerant applications and compare this with the
CLIM-based bit-level reliability estimation. By comparison, CLIM will classify the application quality into two classes: {acceptable,
non-acceptable}. On average, 97% application quality classification is consistent with GLS ground truth.

Index Terms—Error-tolerant Design, Timing Error Modeling, Approximate Computing, Hardware Reliability, Path Sensitization, Input
workload.

F

1 INTRODUCTION

With the continuous scaling of CMOS technology, micro-
electronic integrated circuits are even more susceptible to
timing errors caused by timing violations of sensitized paths,
making them a notable threat to reliability. To protect circuits
from timing errors, designers typically use conservative tim-
ing margins acting as guardbands, computed from a multi-
corner worst-case analysis at design time through static tim-
ing analysis (STA). While safe, worst-case paths are never or
rarely exercised, resulting in loss of performance. Increasing
variability caused by process, voltage, temperature and ag-
ing (PVTA) in advanced processes further exacerbates this
problem.

Attempting to reduce such performance loss, better-than-
worst-case (BTWC) approaches have been explored. These
approaches reduce timing margins by scaling frequency, and

• X. Jiao, J. Wang, R. K. Gupta are with the Department of Computer
Science and Engineering, University of California, San Diego, La Jolla,
CA 92093 USA.
E-mail: xujiao@cs.ucsd.edu;csjgwang@cs.ucsd.edu;gupta@cs.ucsd.edu

• A. Rahimi is with the Department of Electrical Engineering and Computer
Science, University of California, Berkeley, CA 94704 USA.
E-mail: abbas@eecs.berkeley.edu

• Y. Jiang is with the School of Software, Tsinghua University, Beijing
100084 China. (Corresponding author)
E-mail: jy1989@illinois.edu.

• H. Fameti and J. Pineda are with NXP Semiconductors, Eindhoven,
5656AE, The Netherlands.
E-mail: hamed.fatemi@nxp.com;jose.pineda.de.gyvez@nxp.com.

use recovery schemes to correct the timing errors caused by
frequency overscaling [5], [10], [14], [16]. Although effective,
such techniques could incur silicon overhead for online
monitoring. Furthermore, these approaches incur perfor-
mance penalties when correcting timing errors.

To avoid such overhead, a less intrusive adaptive ap-
proach has been proposed to predict and prevent timing
errors by adaptively changing the clock period. Instruction-
level models identify critical instructions by measuring their
maximum delay and use this information to guide runtime
adaptation [34] [41] [11]. Rahimi et al. proposed a timing
error rate prediction model for functional units based on
hardware PVTA variation information [30]. However, these
works all assume a worst-case scenario for path sensitiza-
tion that overlooks the effect of input operands, leading
to pessimistic modeling. Actually, the same instruction or
FU could exhibit a different delay under different input
operands, resulting in different timing error rates (TERs)
[41]. Unfortunately, due to the extremely large input space,
incorporating input operands into timing error modeling
becomes very difficult, if not impossible.

As the efforts to reduce conservative timing margins
become more aggressive, designers are opening up to con-
tinuing operations even in the presence of timing errors.
As of now, approximate computing has allowed occasional
errors in system as long as it delivers an acceptable output
quality [7], [9], [15], [27]. The output quality of approximate

2

computing is hard to guarantee because it usually depends
on the input data. Rely [7], is a language for expressing
approximate computation that allows developers to define
a reliability specification, which identifies the minimum re-
quired probability with which a program must produce an
exact result. Chisel [27], further enhances the capabilities of
Rely by providing combined reliability and/or accuracy spec-
ification. The accuracy specification determines a maximum
acceptable difference between the approximate and exact
result values, while the reliability specification specifies the
probability that a computation will produce an acceptably
accurate result. The former specification can be guaranteed
through unequal error protection methods [3], or by carefully
partitioning the computation through reliable or unreliable
media [9]. However, meeting the latter specification is a
challenge for automatic model generation, since the model
must provide reliable information about the possibility of
an error occurrence under different workload conditions,
i.e., accurate error prediction. Prediction of timing errors is
a difficult problem because the space of instructions and
operands is large. Our attempt to raise the abstraction level
at which this characterization and prediction takes place to
a microarchitectural level faces the following challenges:
Challenge 1: Dynamic path sensitization could be poten-
tially affected by various parameters, such as operand val-
ues, instruction types, and computation history. These be-
come more complex as we move up the level of abstraction
in an attempt to identify useful ‘features’ from the input
parameter space for effective timing error models.
Challenge 2: There might be numerous failed circuit paths
in the design, and the timing errors might be caused by any
one of them. It is unclear how these features will determine
what paths to sensitize and and therefore how they will
induce timing violations. We have no prior knowledge of
the circuit and in general, under cryptographic assumptions
Probably Approximately Correct (PAC) learning of Boolean
circuits is difficult, even under uniform distribution over the
inputs [25].
Proposed Approach: Therefore, to overcome these chal-
lenges and provide an accurate error prediction model,
based on our previous study in [21], we propose CLIM,
a cross-level supervised learning-based model to predict
timing errors for a given input workload, clock period and
FU type. The key idea of CLIM is to establish a prediction
model that can best explore the relationship from input
features to sensitized circuit paths by learning the existing
patterns and their corresponding output classes. For a given
input data and clock period, CLIM predicts output data
to be one of two predefined classes–{timing correct, timing
erroneous} at two levels: bit-level and value-level.

First, we measure the timing errors at each cycle to gen-
erate output class labels using GLS of post-layout designs in
TSMC 45nm technology. We also perform a trial-and-error
process to extract useful features from input data. Second,
we apply supervised learning methods to construct and
train CLIM for four FUs: (INT ADD, FP ADD, INT MUL,
FP MUL) at two levels with extracted input features and
output class labels. Third, we evaluate the prediction accu-
racy of CLIM by comparing its predicted results with GLS-
based ground truth.
Contribution: This paper makes the following contributions:

1) We present a detailed bit-level and value-level tim-
ing error behavior characterization using standard
ASIC flow and gate-level simulation. We show
that different input operands lead to different error
behaviors, and from those conclusions we extract
useful ’features’ from input operands to train the
model. We apply random forest tree on the training
data to develop CLIM, an input workload-aware
learning model to predict bit-level and value-level
timing errors. To our best knowledge, this is the first
cross-level timing error model of FUs considering
the effect of input workload.

2) We evaluate the performance of CLIM at two gran-
ularities under various datasets and circuit param-
eters such as circuit structures and clock periods.
CLIM demonstrates average prediction accuracy of
95% and 97% at value-level and bit-level respec-
tively, exceeding baseline models.

3) We quantify the degree of error tolerance of arith-
metic operations in error-tolerant applications by
deriving their bit-level reliability specifications. By
comparing such bit-level reliability specifications
with CLIM-predicted bit-level reliability, we predict
output quality of such applications into two classes:
{acceptable, non-acceptable}. This prediction is on av-
erage 97% consistent with GLS-based classification.
We also utilize CLIM to analyze the value-level
reliability of FUs, which exhibits deviation within
2.8% on average of detailed GLS ground truth. We
demonstrate the efficiency of CLIM by comparing it
to the execution speed of GLS.

The rest of the paper is organized as follows: Section 2
presents the related work. Section 3 formulates the modeling
problem and defines useful terms. Section 4 describes the
process of constructing CLIM, including timing error extrac-
tion, input feature extraction and application of supervised
learning methods. Section 5 evaluates CLIM performance
and describes its utilization at value-level and bit-level.
Section 6 discusses the potential limitations of CLIM. We
conclude our work in Section 7.

2 RELATED WORK

Various techniques have been proposed for tolerating tim-
ing errors and delivering an acceptable output. There are
mainly three angles in solving this problem: correcting
errors, predicting errors and accepting errors.
Correcting Errors: Various hardware methods have been
proposed to detect and correct errors [14], [4], [36], [37].
A shadow flip-flop was used in [14] to detect and correct
any timing errors induced by speculated voltage scaling.
Such shadow flip-flop approaches were also used in error-
detection sequential circuit (EDS) [4] to double the sample
and compare the signal at different timing. A tunable replica
circuit was deployed at each pipe-stage to monitor timing
errors in a less intrusive way. VARIUS [36] proposes a
microarchitecture-aware model for the process variation-
induced timing errors. To address dynamic variations, a
thermal-aware technique scales the voltage/frequency to
track temperature fluctuations [18]; an event-guided method
takes proper architectural actions to avoid voltage variations

3

[17]. However, the overhead with such intrusive error de-
tection and correction techniques can be large, e.g., 18% [28]
and 21% [16] overheads in area, and 8% [8] power overhead.
Predicting Errors: To avoid such penalties, less-intrusive
techniques predict timing errors in advance and then adap-
tively change timing guardbands to improve performance
while preventing errors.

Several works predict timing errors at instruction-level
[31] [41] [34]. They claim that some instructions, which they
call critical instructions, are more prone to timing errors.
They rely on large-scale GLS and determine critical instruc-
tions by monitoring their timing violation when the clock
period is decreased. These instruction-level schemes have
two main drawbacks. First, they characterize instruction-
level errors based on GLS with limited benchmarks. The
input data from these benchmarks may only sensitize a
limited number of critical paths, resulting in an underes-
timate of instruction-level criticality. On the other hand,
critical instructions are characterized based on a worst-case
scenario of GLS, but in reality, the instruction might not face
timing error because its input operand is not sensitizing the
critical path. This results in pessimistic modeling. Second,
the large amount of GLS is time-consuming and not scalable
and may not cover all path sensitization behaviors. Thus,
these two issues motivate us to develop a timing-efficient
workload-aware model that does not need exhaustive sim-
ulation and considers dynamic path sensitization variation
under various input workload.

There do exist some works that use machine learning to
predict timing errors [30] [22] [38] [42]. A linear discriminant
classifier predicts the timing error rate of FUs by obtaining
PVTA variation information and then adjust timing guard-
bands accordingly [30]. However, it overlooks the effect
of input operands by predicting errors purely based on
PVTA parameters. A logistic regression (LR)-based method
is used to predict bit-level timing errors in [22]. However,
we have shown LR is not a better choice compared to RFC.
Furthermore, its coarse-grained CPRs sometimes could miss
interesting behaviors: it uses up to 15% CPR but as shown in
Fig. 3 some FUs do not have timing errors until 40%. And it
does not consider circuit topology as an input feature in de-
veloping the model. B-Hive, predicts bit-level timing errors
for voltage-scaled FUs [38]. This work is similar to ours with
one difference: it predicts bit-level error based on voltage.
The researchers claim that incorporating input workload in
model development provides only a negligible increase in
accuracy. Nonetheless, we found that incorporating input
operands into error modeling is important, hence the timing
error behavior of FUs, as shown in Fig. 2. Our supervised
learning model can be aligned with such approaches to
provide an accurate error model for hardware execution
under various operating conditions.
Accepting Errors: Although such adaptive methods are ef-
fective in improving performance, these methods strive to
achieve exact instruction execution and are not useful for the
accuracy specification with a wide range of requirements.
Recently, the research community has embraced approxi-
mate computing, which utilizes intrinsic error tolerance at
the application level to allow occasional error occurrences in
a system as long as the output quality is still acceptable by
users. Such applications include multimedia applications,

machine learning applications and emerging fields such as
recognition, mining, and synthesis (RMS). Hardware-level
approximation techniques relax the design constraints (com-
puting device or memory) by tuning approximate knobs. An
accuracy-configurable integer adder offers two operating
modes: exact and approximate [23]. During the exact oper-
ating mode, error detection and correction must be applied,
while in the approximate mode the errors can be ignored
and left out uncorrected. Similarly, floating-point units can
dynamically switch between exact and approximate modes
[33]. Its approximate mode ignores the timing errors on the
less significant N bits of the fraction part where N is a repro-
grammable memory-mapped register. Another technique is
proposed for timing error acceptance to improve the quality-
energy tradeoff for DCT/IDCT components [19].
Our Work: In this work, we combine predicting errors
and accepting errors. For error prediction, we differ from
previous work in that: 1) we predict a timing error at two
granularities by using a RFC method rather than relying on
an exhaustive simulation to characterize the timing errors;
2) we consider the effects of input workload and circuit
topology on path sensitization, hence the timing errors; 3)
we combine the error prediction with error acceptance in
approximate computing to estimate the application quality
under various configurations.

3 PROBLEM FORMULATION

Problem Formulation: We follow the procedure of rep-
resenting the timing errors of a circuit as a function of
circuit parameters and input workload. More specifically,
we abstract a circuit as a mapping from an input space I
consisting of p circuit parameters (e.g., the circuit structure,
and clock speed) and m input bits, to create an input I .
Suppose the function implemented by an ideal circuit, with-
out timing errors is φi and the function of the real physical
circuit is φr , which includes the effect of timing errors. The
output value in error is ψ(I) = φi(I)⊕φr(I), where⊕ is the
XOR operator. Our goal is to learn (an approximation of) ψ
given a range of inputs and circuit parameters.

However, in general we do not know the structure of
the ψ function – it is not even clear a-priori if the structure
of ψ is similar to the structure of the circuit function φ.
We thus propose evaluating a sequence of non-parametric
classification methods to classify the inputs and thereby
map them into different outputs as shown in Section 4.2.3.
Definition: We define x[t] as the input operands vector, y[t]
as the GLS output and y gold[t] as the pure-RTL simulation
output value, all at cycle t. Note that y[t] may contain timing
errors while y gold[t] is always clean. We denote yi[t] and
y goldi[t] as ith bit position of the GLS and RTL simulation
output respectively, where i = 1, 2, ...N and N is the
number of output bits. We define the two classes for output
value: Ce representing timing erroneous and Cc representing
timing correct, and we define the class of y[t] and yi[t] as C[t]
and Ci[t] respectively. At cycle t, if y[t] = y gold[t], then C[t]
is marked as class Cc. If mismatched, then C[t] is marked as
classCe. The same principle applies to bit-level to determine
the bit-level timing class. Our goal is to predict the output

4

RTL

Description

Synthesis

Place & Route

Gate-level

Simulation

TSMC

45nm

Gate-level

Netlist + SDF

STA

Variable

Parameters

Clock

Data pre-

processing

Applications

Arch-level

Simulation

GLS

Input Feature

Extraction

Supervised

Learning

Prediction

Accuracy

Random Data

Input Feature

Output Class

Label

Timing Error Extraction Model Training Model Evaluation

Unseen Data

Predicted

Result
Ground

Truth

Comparator

CLIM

Input

Fig. 1: CLIM model overview with three key stages: a) Timing Error Extraction to examine the timing errors under different
input workload and clock periods, and to generate output timing class labels; b) Model Training to apply random forest
classification (RFC) to construct CLIM with extracted input features from preprocessed data and output timing class labels;
c) Model Evaluation to evaluate CLIM prediction accuracy by comparing its predicted results with GLS-generated ground
truth, under different benchmarks datasets.

class C[t] (Ci[t]) at cycle t as a function of input workload,
clock period and FU type, denoted as follows:

C[t] = f(tclk, FUtype, x[t], x[t− 1], x[t− 2], ..., x[1]) (1)

Ci[t] = f(tclk, FUtype, x[t], x[t− 1], x[t− 2], ..., x[1]) (2)

where tclk is the clock period, FUtype is FU type, x[t], x[t−
1], ... x[1] are the input workloads at cycle t, t − 1, ...1. The
reason for putting the entire input stimuli history is that we
do not know whether previous input workload would set a
circuit state and thereby have an effect on the timing error
behavior of current cycle t. In instruction-level models [41]
[11] [34], the effects of input workload are not considered.
However, per the conclusion in [38], timing errors would be
better modeled by including a deep history. Therefore, we
later investigate the features from input data which affect
the output timing error behaviors, as shown in Section 4.2.2.
In summary, this becomes a binary classification problem:
for a given input data and circuit parameters at cycle t, t −
1, ...1, CLIM predicts the output C[t] (Ci[t]) to be one of two
classes: Cc or Ce.

4 CLIM MODEL

CLIM Model: It is composed of three phases as shown in
Fig. 1: Timing Error Extraction, Model Training and Model Eval-
uation. a) The Timing Error Extraction phase implements the
standard ASIC flow and uses GLS to generate timing class:
Cc if matched, otherwise Ce. b) In the Model Training phase,
we preprocess the training data and extract useful features
from them, which will then be incorporated into modeling.
We then apply RFC method to construct the model with
the input features and output timing class labels generated
from last phase. c) In the Model Evaluation phase, we use

CLIM to predict the timing class of the FU output value and
then compare the predicted class with GLS ground truth to
compute prediction accuracy. More details about the three
phases are illustrated as follows.

4.1 Timing Error Extraction

We use both 32-bit integer and single-precision float-
ing point units (FPUs) as our experimental platforms:
INT ADD, INT MUL, FP ADD, FP MUL, implemented in
VHDL. FPUs are fully compatible with the IEEE-754 stan-
dard and can provide more complex structures compared
to their integer counterparts. We change the data types
and circuit structures to better evaluate the robustness of
our model. We extract the value-level and bit-level timing
errors through Timing Error Extraction module as illustrated
in Fig. 1, which is divided into several steps.

We use FloPoCo [13] to generate the synthesizable VHDL
codes of combinational circuits. We put wrappers at input
and output ports to have better timing notations. We then
use Synopsys Design Compiler to synthesize the VHDL codes
and use Synopsys IC Compiler to generate post place-and-
route netlist in TSMC 45nm technology. Next, we use Synop-
sys PrimeTime to perform static timing analysis, generating
a Standard Delay Format (SDF) file. Then, we vary clock
periods to simulate the netlist with Mentor Graphics Modelsim
to do SDF back-annotation gate-level simulation to generate
output data y[t]. The input stimuli of simulation x[t], comes
from two sources: Python-written random data generator
and the application input data profiled using Multi2Sim
[39], a cycle-accurate CPU-GPU heterogeneous architectural
simulator. At cycle t, the input stimuli vector x[t] is applied
to GLS to generate output y[t] (yi[t]) and compare with pure-

5

RTL simulation result y gold[t] (y goldi[t]) to derive timing
errors as shown in Section 3.

4.2 Model Training
4.2.1 Data Preprocessing
To collect the training input data, we generate the random
input data as stimuli for simulations. For a 32-bit bit vector,
we randomly set each bit independently to produce the
training data. But note that for test input data, which might
come from application profiling, its format could be in
decimal format. We need to preprocess such input data to
convert it into the correct format, for example, 0.5 should be
converted to 00111111000000000000000000000000 if the FU
is of IEEE-754 single-precision format. The reason for doing
this is that the FU accepts 32-bit input vectors and each
bit value could affect the dynamic path sensitization, hence
the final timing class. The decimal value cannot precisely
represent the impact of each bit location. Therefore, in our
model training, we use each bit value to compose input
features rather than the decimal value alone.

As a matter of methodology, we remove the repetitive
pair of {x[t − 1], x[t]} in the dataset because the same pair
of current and preceding input leads to same timing class
(as shown next). We also exclude an ambiguous case where
the preceding input x[t − 1] is the same with current input
x[t], because even if a timing violation occurs at cycle t, the
output could still appear to be correct. We note that these
two situations are unlikely especially with randomly chosen
32-bit operands.

4.2.2 Feature Extraction
From the processed training input data, we need to find
out the useful input features that determine the output
timing class. Empirically, the current cycle input workload
x[t] directly affects the dynamic path sensitization at cycle t,
hence the final output timing class. However, it is not clear
whether the preceding input has impact on the current cycle
path sensitization and timing behavior. To explore the effect
of history input workload, we use a trial-and-error process,
which iteratively varies the preceding input while fixing the
current input workload. We set the experiment as follows:

• Case 1: We fix the current input x[t] and randomly
vary the preceding cycle input x[t− 1], where we set
cycle t = 10, 30, 50, 70, We use this to evaluate the
effects of immediately preceding input.

• Case 2: We fix both the current input x[t] and the
immediately preceding input x[t − 1], while ran-
domly varying the preceding input of immediately
preceding input x[t−2], where we set t as above. We
use this to evaluate the effects of the deeper history.

We use 100K cycles for simulation and use different clock
periods. At value-level, in Case 1, we found the timing class
C[t] varies irregularly. More specifically, by comparing ev-
ery two examined neighboring outputs, e.g., c[30] and c[50],
we found 44% of neighboring pairs exhibit different timing
classes. In Case 2, we found all output timing classes C[t]
exhibit exactly the same behaviors, i.e., all Cc or Ce. At the
bit-level, we examine the hamming distance between every
two examined neighboring timing class outputs, where each

output is a 32-bit vector of Ci[t], where i = 0, 1, ...31. The
hamming distance between two vectors is defined as the
number of mismatched bit positions, e.g., 10001 and 10000
has a hamming distance of 1. In case 1, we can see most
pairs have a positive hamming distance, indicating that the
resulting output timing classes are different. In case 2, the
neighboring hamming distance is always 0, which means
the bit-level timing class output is exactly the same for every
bit position.

This key observation shows that only the preceding and
current cycle input vectors x[t − 1], x[t] are accountable for
timing errors in the current cycle t. For a combinational logic
placed between sequential elements, it is natural that the
preceding input workload sets a state for the circuit, and
then the current input toggles nets based on the current
state. Thus, the path sensitization depends on both the
current circuit state and current circuit input. However,
since most previous works do not consider input operands
as features for timing error modeling [30] [41] and some
work points out that including a deeper history would
increase the accuracy [38], we investigate the effects of
input operands and history. This key observation locates
the source factors that determine the dynamic path sensiti-
zation and motivates an workload history-aware modeling
approach.

On the other hand, we explore circuit parameters that
can reflect or partially reflect the timing violation behaviors.
One parameter that can be used is timing class output. At
the value-level, the circuit output timing errors occur if and
only if at least one output bit location faces a timing viola-
tion. The timing violation of a particular output bit occurs
only when there is at least one sensitized circuit path ending
at that bit facing violation. A sensitized path would have all
of its nodes toggled [6]. Hence, the end point, i.e., the output
bit, should also be toggled. Thus, we also take the final
output value into our modeling as part of the input feature.
In summary, by composing aforementioned features, our
final input features are {x[t−1], x[t], y gold[t−1], y gold[t]}.
At bit-level, the same principle applies and leads to the final
input features are {x[t− 1], x[t], y goldi[t− 1], y goldi[t]}.

4.2.3 Training Process
Since the model has two levels, we also need to train
the model at two-levels respectively. At the value-level,
we set {x[t − 1], x[t], y gold[t − 1], y gold[t]} as the input
feature and Ct as output class labels; At the bit-level, we
set {x[t − 1], x[t], y goldi[t − 1], y goldi[t]} as the input
feature and Ci[t] as output class labels. Therefore, for a
given circuit with K-bit output, a set of K+1 binary classifiers
is developed. Model Training stage in Fig. 1 illustrates the
process of constructing the model. First, we apply 500K
random data points as training input data. We extract the
input feature through Feature Extraction module and output
labels through Timing Error Extraction stage. We then apply
and evaluate several supervised learning methods on these
training data to train CLIM.

While certain positive learnability results exist for spe-
cific classes of circuits [26], they do not cover the circuits we
consider here. In contrast to these aforementioned methods
(which essentially learn a model of the circuit under consid-
eration), we focus on learning when a circuit does not work

6

as desired, i.e., the circuit contains timing errors. Capturing
the timing errors will require learning a binary classifier.
Thus, we evaluate four supervised learning methods for
their increased sophistication and practical use: k-nearest
neighbor (k-NN), support vector machine (SVM), logistic
regression (LR) and random forest tree (RFC) classifiers
[2]. These learning methods are very popular in classifying
various kinds of tasks and we want to see whether they
fit for the timing error classification tasks. By comparing
them we can also conclude why we choose a particular
method. The machine learning module is provided by Scikit
learning module [29] in Python, and we use the default
configurations for the classifiers.

We evaluate k-NN because it provides useful theoretical
properties [12] and has limited parameters to train. Given
an input vector x, k-NN classifier predicts a timing error if
the majority of the k nearest neighbors of x in the dataset
D has timing errors. However, in our case, K-NN finds its
nearest neighbors based on hamming distance, which actu-
ally overlooks the situations wherein different bit positions
would have disparity of significance on path sensitization.
Thus, we would expect the k-NN model perform badly.
In addition to this, k-NN classifiers typically have sub-
par generalization performance (i.e., performance on new
data) when available labeled data is limited, which could
potentially lead to appropriate feature normalization and
scaling issues.

To address these problems, we evaluate LR and SVM
because they can learn weights w on each bit position,
which considers the disparity of significance of different bit
positions.

In LR, we learn weights to compare the logic functions
that perform well on the training data D. In particular, for
an input x we predict 1, or the timing error, if the ratio of
F (x)

1−F (x) >= 1 where F (x) is given by

F (x) =
1

1 + e−w·x
(3)

In SVM, given labels yi for the N training data points
xi, SVM learn w based on the following large margin
optimization problem:

minw,η,b
1

2
||w||2 + C

∑
i

ηi (4)

s.t. yi(w · xi + b) ≥ 1− ηi (5)

where w is weights and b is offset, which jointly determine a
separating hyperplane. Essentially, weights are learned that
maximize the margin (ηi) by which examples are classified
correctly. Typically, input examples are mapped to a higher
dimensional kernel space (we use the popular Gaussian
Radial Basis Function (RBF) kernel in our experiments).

LR and SVM can learn the disparity of significance of
different bit positions. However, one potential limitation
is that, they put a fixed weight on each bit position. It is
unclear whether each bit position contributes linearly to the
final timing error, and the contribution of each bit position
might be changed along with the change of other bit values.
Think about an ”AND” gate – if one input is zero, then the
final result will always remain the same regardless of the
value of the other input.

To address this problem, we propose to use RFC. RFC
is an ensemble-learning method that constructs multiple
decision trees at training time and uses their averaging to
improve accuracy and control overfitting. Decision trees are
a non-parametric supervised learning method that aims to
establish a tree-like model by learning decision rules from
training data. As a white box model, the decision rules are
based on Boolean logic; thus it is easy to understand and
interpret. However, decision trees can easily create overly
complex trees and become very deep by learning many
irregular patterns with a large variance. This will lead to
the notorious overfitting problem, which cannot generalize
the data well. RFC alleviates this problem by constructing
multiple decision trees. In our scenario, RFC can predict the
timing errors based on the decision rules it learned from
the data patterns. This method emphasizes the disparity
of different bit positions and also considers the interaction
between the input bits. Although it may lose the opportu-
nity to learn some ”irregular” patterns, overall it reduces
overfitting and boosts performance.

S =

f1A f1B f1C C[1]
f2A f2B f2C C[2]

...
...

...
...

fdA fdB fdC C[d]

 (6)

S1 =

f5A f5B f5C C[5]
f10A f10B f10C C[10]

...
...

...
...

f100A f100B f100C C[100]

 (7)

S2 =

f15A f15B f15C C[15]
f20A f20B f20C C[20]

...
...

...
...

f200A f200B f200C C[200]

 (8)

SM =

f3A f3B f3C C[3]
f40A f40B f40C C[40]

...
...

...
...

f400A f400B f400C C[400]

 (9)

We use equation 6 to equation 9 to illustrate the process
of creating a random forest classifier. Equation 6 is the
original training dataset, where we have d input samples,
each of which is composed of 3 features, that lead to a
particular class C . We split the entire training data into M
independent sub-sample datasets, S1, S2,...,SM . Then, we
use M decision tree classifiers to fit all sub-sample datasets.
Hence, M decision trees are developed. Finally, each deci-
sion tree predicts the class and we use the majority vote
of all M votes as the final prediction result. In the model
construction, we need to tune several important parameters
such as number of trees in the forest, the depth of trees,
and the number of features to test at each node. Increasing
these parameters could possibly improve the prediction
accuracy but incurs more computational overhead. Thus,
we use the default settings recommended by Scikit learning
module [29].

Table.1 presents the prediction accuracy, training and
testing time of four methods using 100K random training

7

data and 10K random test data under a computer con-
figuration of 2-core Intel(R) Xeon(R) CPU E5504@2.00GHz
and 50GB memory. More specifically according to the Table,
LR is fastest because of its relatively easy computation
process, which assigns weight to each bit position. However,
it achieves the lowest accuracy because the contribution
of each bit position is not identical to the final output.
Although SVM achieves good accuracy, compared with the
other three classifiers its long running time impedes its use.
Comparing to the other three baseline classifiers, we can
emphasize why RFC is the choice because it can interpret
the difference at each bit position (compared with KNN)
as well as interactions among bits (compare with SVM and
LR). Finally, we choose RFC due to its high accuracy, fast
computing time and superior interpretability. Note that the
training process is a one-shot activity, so the testing time is
more important for model usage.

TABLE 1: Prediction accuracy, training time, and testing
time of four learning methods.

method Accuracy Training Time Testing Time
LR 85% 42.8s 0.21s

KNN 87% 4224s 849s
SVM 92% 18600s 1968s
RFC 93% 94.74s 0.26s

4.3 Model Evaluation
We evaluate the model performance by comparing with GLS
under various FUs, clock periods, and datasets.

4.3.1 Evaluation Metrics
Prediction Accuracy: Prediction accuracy is an intuitive
measurement of how accurate the predictions are. We define
mean bit-level prediction accuracy (MBPA) and mean value-
level prediction accuracy (MVPA) as follows:

MBPA[clk] =

∑
bit i

(∑
cycle t

|C(pred)
clk,i,t==C

(real)
clk,i,t|

#cycles

)
#bit positions

(10)

MVPA[clk] =

∑
cycle t

|C (pred)
clk,t == C (real)

clk,t|

#cycles
(11)

where C (pred)
clk,i,t and C (real)

clk,i,t are the predicted and real
timing classes (1 for timing-erroneous and 0 for timing-
correct) for bit position i at a given clock period clk and
cycle t. C (pred)

clk,t and C (real)
clk,t are the predicted and real timing

classes (1 for timing-erroneous and 0 for timing-correct) for
the entire value at a given clock period clk and cycle t. Its
best value is 0 and worst value is 1.

4.3.2 Comparison Methods
We compare CLIM against following baseline methods,
which can help us evaluate the true performance of our
model:

• rand [35]: This model is adopted from [35]. We call it
rand model because it predicts the timing class with
random guessing without considering the effects of
input operands.

• fixed [11] [34] [41]: This model is adopted from [11]
[34] [41]. We call it fixed model because it always
predicts a fixed timing class based on the pre-
characterized information, i.e., it predicts Cc (Ce)
when the clock period does (not) meet the measured
maximum instruction-level timing delay. At the bit-
level, it always predicts the particular timing class
that has more instances in training data. For example,
if in the training data more data are timing correct
than erroneous, then this model always predicts tim-
ing correct. Note that this model can lead to high
prediction accuracy if the dataset is heavily biased,
e.g., 99% of the output data is Cc. Then its prediction
accuracy is 99% by always predicting timing correct.

5 EXPERIMENTAL RESULTS

In this section, we first describe our experimental setup.
Second, we characterize hardware timing behaviors. Third,
we evaluate CLIM performance at both the bit-level and the
value-level. Lastly, we examine CLIM efficiency.

5.1 Experimental Setup
To provide a decent amount of timing errors, we set the
experimental clock period for each FU for which their value-
level timing error rates (TERs) reach 10%, 20%, and 30%
under random data approximately, where TER is calculated
as #erroneous cycles/#total cycles. From this point on,
we refer the clock period reduction (CPR) pair, which leads
to such three TERs as {CPR1, CPR2, CPR3}. Note that such
CPR pair values are different for each FU.

While such CPRs could be derived through a trial-and-
error GLS, it is very time-consuming since we need to iterate
clock periods until the target timing error rates is met. This
process could take numerous GLS, especially considering
we have four FUs and three CPRs. Therefore, we derive
such clock periods through the characterization of dynamic
delays of all simulation cycles. We know a timing error occur
if the clock period is less than the dynamic delay at a cycle;
therefore we only need to sort all the dynamic delays and
find the top 10%, 20%, and 30% dynamic delay as the {CPR1,
CPR2, CPR3}. First, we extract all the dynamic delays; we
parse the value change dump (VCD) file, which is generated
by GLS at a relatively slow clock period to make sure there
is no timing violation. The VCD file records the toggled
endpoints of each circuit path at each cycle. Second, for
each clock cycle, we use the last toggle event time of the
input pin of all sequential elements (flip-flop, registers, etc.)
to subtract the last positive clock edge arrival time to get the
maximum delay at that cycle. For example, at cycle N the
positive clock edge occurs at time t, and the very last toggled
event at the data input pin of all sequential elements occurs
at time t′, then the dynamic delay at this cycle is t′−t. Third,
we sort all the dynamic delays in a descending order, and
locate the delay at the top 10%, 20%, and 30% position.

We use three datasets to evaluate and utilize the model:
random data, Sobel filter and Gaussian filter. The two image
processing applications are adopted from AMD APP SDK
[1]. The openCL code of these applications are simulated
by Multi2Sim to profile input data. The images are adopted
from Caltech-UCSD Birds 200 vision dataset [40].

8

0 5 10 15 20 25 30
Bit Position

0

2

4

6

8

10

12

Ti
m

in
g

Er
ro

r R
at

e
(%

)

random_data
sobel_data
gauss_data

(a) INT ADD

0 5 10 15 20 25 30
Bit Position

0

5

10

15

20

Ti
m

in
g

Er
ro

r R
at

e
(%

)

random_data
sobel_data
gauss_data

(b) FP ADD

0 5 10 15 20 25 30 35 40 45 50 55 60
Bit Position

0

10

20

30

40

50

Ti
m

in
g

Er
ro

r R
at

e
(%

)

random_data
sobel_data
gauss_data

(c) INT MUL

0 5 10 15 20 25 30
Bit Position

0

1

2

3

4

5

6

7

8

9

Ti
m

in
g

Er
ro

r R
at

e
(%

)

random_data
sobel_data
gauss_data

(d) FP MUL

Fig. 2: Bit-level timing error rate (%) under different input datasets.

10 20 30
Timing Error Rate (%)

5

10

15

20

25

30

35

40

45

50

Cl
oc

k
Pe

rio
d

Re
du

ct
io

n
(%

)

INT_ADD
FP_ADD
INT_MUL
FP_MUL

Fig. 3: Value-level timing error rate (%) versus clock period
reduction (CPR).

5.2 Hardware Characterization

Timing errors are caused by the violations of circuit timing
specification where the sensitized path delay is larger than
the clock period. Thus, the key to modeling timing errors
is to model the path sensitization behavior. We present a
case study that demonstrates the effect of input operands on
timing errors. We utilize the Timing Error Extraction module
described in Section 4.1 to characterize the timing errors of
different FUs.

5.2.1 Bit-level

We depict bit-level timing errors at CPR3 under different
input datasets as illustrated in Fig. 2, where we observe
several important facts.

First, under the same input dataset, different bit posi-
tions exhibit different timing error rates. This is because
different output bits lie on different paths with different
delays. Second, under a different input dataset, the same bit
positions exhibit different timing error rates. For example,
in Fig. 2(c), some bit positions under the sobel and gauss
datasets exhibit a nearly zero timing error rate while those
same bits under random dataset exhibit up to a 20% timing
error rate. This is because different input data exercise

different paths towards an output bit, thus causing differ-
ent delays. Third, some bit positions might exhibit similar
timing error rates under different datasets. For example, in
Fig. 2(d), some bit positions exhibit a similar timing error
rate under three datasets. From this observation, we infer
that the path sensitization behavior in FP MUL is relatively
similar under these three input datasets, thus resulting in
similar timing error rates. In summary, these observations of
input data impact on timing error behavior has motivated
us to develop an workload-aware model.

5.2.2 Value-level
In Fig. 3 we present three different CPRs of four FUs that
would lead to 10%, 20%, and 30% TERs, where we can
observe several important facts. First, for INT ADD, 10%
TER is caused by 43% CPR, meaning that 43% timing margin
is used to protect 10% timing violations. This suggests a
large timing margin has been used for worst-case scenarios.
Second, TER increases rapidly after that: TER increases from
10% to 30% while CPR only increases from 43% to 45%.
This suggests that many paths of similar lengths are sensi-
tized in this delay range, which this is consistent with the
timing wall phenomenon [24]. When we compare FP ADD
timing characteristics with INT ADD, we found there is
a difference and a similarity. The difference is that, for
FP ADD, the same level of timing error rate is caused by
a lower CPR, indicating that FP ADD is more susceptible to
clock period reductions. The similarity is that, the TER also
rapidly increases after that point: TER increases from 10% to
30% while CPR only increases from 21% to 23%. This is also
consistent with the timing wall phenomenon. Both designs
suggest that there is a large timing margin used to protect
worst-case timing violations (10%) and emphasizes the need
for accurate timing error model.

5.2.3 Failed Paths
We also compute the number of paths with negative slack
under such CPRs for INT ADD. As illustrated in Fig.5, the
number of failed paths increases with the CPR. We note
that for every CPR point, there are more than 6K failed
paths. This means that once any path in this set fails,
the whole design faces timing violation. This corresponds
to challenge 2 in Section 1, where multiple path failures
can lead to timing violations; however we need to learn
whether any member of these failed paths will be sensitized.

9

(a) Original Input (b) Exact Output (c) Approximate Output

Fig. 4: (a) Original input image. (b) Error-free exact Sobel filter output with PSNR = inf . (c) Error-injected approximate
Sobel filter with PSNR = 30dB.

CPR1 CPR2 CPR3
Clock Period Reduction (%)

6200

6400

6600

6800

7000

7200

7400

#
Fa

ile
d

pa
th

Fig. 5: The number of failed path of INT ADD under differ-
ent clock period reductions.

For the FP ADD, even for the slightest TER at 10%, we
observed more than 30K failed paths. CLIM needs to predict
the timing violation even if there is only one path failure,
which makes it an extremely difficult task to learn such path
sensitization behaviors.

5.3 Bit-level CLIM

We first evaluate the bit-level model of CLIM on four FUs
and compare with baseline models.

Table 2 and Table 3 present the MBPA of CLIM for
INT ADD and FP ADD, where we can observe several
facts. For INT ADD, CLIM exhibits prediction accuracy
between 95.6%-99.9% across three datasets and CPRs. Mean-
while, fixed can deliver prediction accuracy between 88.7%-
99.9% and rand almost always achieves 50% accuracy. More
specifically, fixed only achieves 99.9% accuracy when the
input dataset is sobel or gauss. These two datasets are heavily
biased with almost zero TERs, according to Fig. 2(a). For
rand dataset, which is more representative, CLIM achieves
96.2% accuracy while fixed achieves 91.3% accuracy on

average. For FP ADD, CLIM exhibits prediction accuracy
between 93.5%-98.7% across three datasets and CPRs. Mean-
while, fixed can deliver prediction accuracy between 87.9%-
97.5% and rand almost always achieves 50% accuracy. On
average, CLIM achieves 96.3% accuracy and fixed achieves
92.1% accuracy. In summary, under mild TERs, fixed clas-
sifier can almost always achieve decent accuracy, perhaps
leading one to doubt whether it is necessary and worthwhile
to develop CLIM. In fact, fixed classifier has no ability
to identify any positive output because it always predicts
outputs to be Cc. This will severely hurt system reliability
as it assumes no error when an error could occur. Thus, we
further compare these models on more FUs by using them
to predict the output quality of approximate computing
applications as presented in Table 4 and Table 5. Before
getting to the result, we first introduce bit-level reliability
specification of approximate computing applications.

Bit-level Specification The error-tolerant applications used
in the approximate computing field exhibit enhanced er-
ror resilience at the application-level when multiple valid
output values are permitted. Instead of a single output
value, the output value is associated within an application-
specific quality metric, such as peak signal-to-noise ratio
(PSNR). Therefore, if execution is not numerically precise,
the application can still appear to execute correctly from the
users’ perspective. We focus on error-tolerant applications
mainly from the image processing domain, including Sobel
filter and Gaussian filter. In image processing applications, a
PSNR larger than 30dB is generally considered as acceptable
to users [33]. As illustrated in Fig. 4, it is hard to tell the
difference between exact output and approximate output.

We quantify the degree of error tolerance of arithmetic
operations in these applications by defining the notion
of bit-level reliability specification. Similar with Rely [7]
described in Section 1, it defines the minimum required
probability with which the arithmetic operation output bit
must be correct so that the application can deliver an accept-
able output. For example, if we say reliability specification
of 20th bit of FP MUL operation is 70%, it means if the
reliability of this bit is lower than 70%, the application

10

TABLE 2: Bit-level CLIM on INT ADD for timing error prediction.

datasets CPR1 CPR2 CPR3
CLIM fixed rand CLIM fixed rand CLIM fixed rand

random 96.7% 92.8% 50.0% 96.1% 92.3% 49.9% 95.6% 88.7% 50.0%
sobel 99.8% 99.9% 49.9% 99.9% 99.9% 49.9% 99.9% 99.8% 50.0%
gauss 99.9% 99.9% 49.9% 99.9% 99.9% 49.9% 99.9% 99.9% 49.9%

TABLE 3: Bit-level CLIM on FP ADD for timing error prediction.

datasets CPR1 CPR2 CPR3
CLIM fixed rand CLIM fixed rand CLIM fixed rand

random 97.6% 91.1% 49.8% 95.5% 88.6% 50.1% 94.8% 87.9% 50.0%
sobel 96.3% 93.4% 49.9% 94.4% 89.4% 50.0% 93.5% 88.6% 49.9%
gauss 98.7% 97.5% 50.0% 98.1% 96.7% 49.9% 98.1% 96.2% 50.0%

TABLE 4: Bit-level CLIM on INT MUL for application quality prediction.

datasets CPR1 CPR2 CPR3
CLIM fixed rand CLIM fixed rand CLIM fixed rand

sobel 100% 100% 3.1% 100% 100% 3.1% 100% 100% 3.1%
gauss 100% 100% 4.6% 100% 100% 4.6% 98.4% 95.3% 4.6%

TABLE 5: Bit-level CLIM on FP MUL for application quality prediction.

datasets CPR1 CPR2 CPR3
CLIM fixed rand CLIM fixed rand CLIM fixed rand

sobel 100% 68.7% 87.5% 100% 68.7% 87.5% 96.8% 68.7% 87.5%
gauss 96.8% 75.0% 78.1% 93.7% 75.0% 78.1% 93.7% 75.0% 78.1%

output quality is not acceptable.

We compute the reliability specification for each bit of
interested arithmetic operations through an iterative fault
injection process as shown in Fig. 6. First, we flip the
one output bit of our interested operation (e.g., INT MUL)
with an initial probability that is small enough so that the
application output quality is acceptable. This fault injec-
tion is done using our-modified version of Multi2Sim [39]
simulator. Second, we check the output quality (PSNR) of
the resulted application using Matlab. Third, if the output
quality is acceptable, we increase the bit flip probability and
repeat step 1 and 2 until the output quality is not acceptable,
then we use the last acceptable probability as the threshold
probability. After these steps, we calculate the reliability
specification as 1 − threhold probability. We repeat such
fault injection processes for every bit position across mul-
tiple arithmetic operations and error-tolerant applications.

Quality Estimation We then use CLIM to predict the error-
tolerant application quality into two classes: {acceptable, non-
acceptable} with the following process. First, we obtain the
bit-level reliability specification of each bit position. Second,
we use CLIM to predict the bit-level TER of each bit posi-
tion, and then use 1 − TER to derive bit-level reliability.
We then compare the predicted reliability with reliability
specification. If the predicted reliability is greater than the
specification, then CLIM will predict the application quality
is acceptable; otherwise it is unacceptable. For example, if
the predicted reliability for 20th bit of FP MUL is greater
than 70%, then CLIM will predict the application quality
is acceptable. Third, we use GLS to compute the ground-

Increase

Pbit_flip

Arch-level

Simulation

Acceptable

NO

YES

Last Pbit_flip

Pbit_flip

Output

Quality

Fig. 6: Derive bit-level reliability specification for error-
tolerant applications through fault injection. Pbit flip is a bit
flip probability.

truth reliability for each bit position. Then we use such
reliability to determine whether the application quality is
acceptable by comparing it with reliability specification, as
with the second step. Finally, GLS will produce a ground
truth result on whether an application quality is acceptable

11

TABLE 6: value-level CLIM on INT ADD for timing error prediction.

datasets CPR1 CPR2 CPR3
CLIM fixed rand CLIM fixed rand CLIM fixed rand

random 96% 9.9% 49.7% 93.5% 19.0% 50.0% 91.2% 29.6% 49.8%
sobel 99.3% 0.7% 49.9% 99.0% 0.8% 49.8% 98.4% 1% 50.0%
gauss 99.9% 0.1% 50.0% 99.9% 0.1% 50.0% 99.0% 0.1% 49.9%

TABLE 7: Value-level CLIM on FP ADD for timing error prediction.

datasets CPR1 CPR2 CPR3
CLIM fixed rand CLIM fixed rand CLIM fixed rand

random 95.6% 9.7% 50.2% 93.2% 20.1% 50.1% 92.3% 67.0% 49.8%
sobel 95.3% 33.8% 49.9% 88.8% 39.9% 50.1% 92.2% 48.8% 49.9%
gauss 97.1% 9.6% 49.9% 94.2% 11.9% 50.0% 93.3% 15.6% 49.8%

TABLE 8: Value-level CLIM on INT MUL for reliability prediction using AE.

datasets CPR1 CPR2 CPR3
CLIM fixed rand CLIM fixed rand CLIM fixed rand

random 0.9% 89.9% 49.9% 0.6% 79.4% 29.4% 0.5% 70.2% 20.3%
sobel 2.4% 91.6% 41.6% 1.8% 84.4% 34.4% 4.6% 69.2% 19.2%
gauss 0.6% 89.8% 39.8% 3.1% 81.6% 31.5% 4.7% 65.1% 15.0%

TABLE 9: Value-level CLIM on FP MUL for reliability prediction using AE.

datasets CPR1 CPR2 CPR3
CLIM fixed rand CLIM fixed rand CLIM fixed rand

random 3.3% 89.9% 39.9% 3.9% 79.9% 29.9% 3.3% 70.5% 20.5%
sobel 0.4% 89.7% 39.7% 4.0% 80.0% 30.0% 0.5% 69.9% 19.9%
gauss 4.2% 89.9% 39.9% 5.8% 79.5% 29.5% 6.2% 70.9% 20.9%

or not. Fourth, we then compare the prediction result of
CLIM with GLS ground truth and compute the prediction
accuracy across all the bit positions. We repeat the same
process for fixed and rand classifier.

Table 4 and Table 5 compare the accuracy of the three
models. For INT MUL, both CLIM and fixed achieve high
prediction accuracy because according to Fig. 2(c), sobel and
gauss have almost zero TERs. Thus, the real reliability is
close to 100% which matches the fixed classification. The
rand achieves low accuracy because its predicted reliabil-
ity is close to 50% while the real reliability is close to
100%. For most bit positions, the bit-level specification is
between 50% and 100%, thus rand has a different prediction
than ground truth, resulting in low accuracy. For FP MUL,
CLIM achieves accuracy between 93.7%-100% while fixed
and rand achieves 68.7%-75.0% and 78.1%-87.5% respec-
tively. The low accuracy of fixed is due to the fact that most
bit positions of FP MUL have non-zero TERs. For exam-
ple, for bit position 21 under sobel dataset whose bit-level
specification is 99%, its ground-truth reliability is 96.7%
as computed by GLS, making the quality non-acceptable.
Since CLIM-predicted reliability is 95.5%, fixed-predicted
reliability is 100% and rand-predicted reliability is 50%, both
CLIM and rand correctly predict non-acceptable while fixed
predicts acceptable, leading to a misprediction. In summary,
CLIM demonstrates robustness across FUs and datasets re-
gardless of whether it is biased, while fixed achieves low
accuracy due to its inability to identify erroneous instances.

5.4 Value-level CLIM
Table 6 and Table 7 present the MVPA of CLIM for INT ADD
and FP ADD. For INT ADD, CLIM exhibits average pre-
diction accuracy at 97.4% across three datasets and CPRs.
Meanwhile, fixed delivers average prediction accuracy at
6.8% and rand almost always achieves 50% accuracy. For
FP ADD, CLIM exhibits average prediction accuracy at
93.6% across three datasets and CPRs. Meanwhile, fixed
delivers average prediction accuracy at 28.5% and rand
almost always achieves 50% accuracy. The low accuracy of
fixed classifier is due to the fact that at instruction-level, it
always predicts Ce for all cycles because examined clock
periods are all smaller than instruction-level timing delay. It
only considers the worst-case scenario to set its instruction-
level timing delay. Since fixed always predicts Ce when
the examined clock period is smaller than instruction-level
delay, its predicted value-level reliability is always close to
0. This will severely deviate from the ground truth reliability
when the TER is mild. Thus, we further compare these mod-
els on more FUs by utilizing them to predict the reliability
as presented in Table 8 and Table 9.

Before getting to the result, we introduce the evaluation
metric on assessing the accuracy of reliability predictions:
absolute error, as follows

AE = |relipred − religls| (12)

where relipred is the predicted reliability while religls
is the ground truth reliability derived by GLS. This metric
defines the difference between the predicted value and the
”true” value, so a smaller value means a better performance.

12

Table 8 and Table 9 compare the accuracy of three mod-
els. For INT MUL, CLIM achieves AE between 0.5%-4.7%
while fixed and rand achieve 65.1%-91.6% and 15.0%-49.9%
respectively. For FP MUL, CLIM achieves AE between 0.4%-
6.2% while fixed and rand achieve 69.9%-89.9% and 19.9%-
39.9% respectively. The low accuracy of fixed is due to the
fact that at the three CPRs, the TERs are approximately
10%, 20%, and 30% respectively and fixed always predicts
0 reliability, leading to a huge difference. This indicates that
only considering the worst-case instruction-level delay to
predict timing errors could lead to a huge deviation from
the real scenario, which might be even worse than a random
guess. Meanwhile, CLIM demonstrates its robustness with
average AE at 2.8%.

5.5 CLIM Efficiency
We compare the CLIM speed with GLS. On average across
all datasets and FUs, CLIM computes 173X faster than GLS.
The more complex the circuit structure, the slower speed
for simulation. But this might not apply to CLIM, because it
processes input data according to its own rule, which might
not scale up with the complexity of the circuit structure.
For previous instruction-level models [41], the authors claim
that the GLS is very time-consuming and becomes a bot-
tleneck for research purpose. Thus, CLIM provides a faster
alternative way to examine reliability without performing
time-consuming conventional GLS.

6 DISCUSSION

Variability Consideration: This paper mainly focuses on
modeling timing error based on dynamic path sensitization
behaviors caused by input operands. Therefore, it does not
consider hardware variability effects such as PVTA variation
on timing errors. Our previous work [30] did establish a tim-
ing error model by considering hardware variability, which
is orthogonal to our approach by considering the input
stimuli. Therefore, these two approaches can be combined
to provide a more holistic model.
Potential Usage: The machine learning approaches pro-
posed in this paper can also be used to predict the timing
errors for a different implementation of circuits, such as
approximate adders [20]. On the other hand, the model
could be utilized online to guide dynamic frequency scaling
(DFS) with an efficient physical implementation. Recently,
a voltage-droop induced delay prediction model has been
implemented using SVM to guide online DFS [42], whose
hardware overhead is 1.5% for today’s processor design. We
expect the overhead of CLIM is less than such a model, since
by comparison Table 1 shows that SVM computing time is
more than 7000X of RFC model.
Potential Limitation: The main limitation of such a
learning-driven method is that it only works for arithmetic
functional units. It is unclear whether it can work for other
micro-architecture parts such as memory. This is because the
advantage of machine learning is that it can learn the path
sensitization based on input data pattern, which is the main
factor that determine timing errors. But for memory, there is
not a clear clue as to the source factors of its timing errors.
Potential Improvement: In fact, despite the fact that the
deep neural networks recently achieve very high classifi-

cation accuracy in various classification tasks, their imple-
mentations require massive amount of hardware resources
that limits their usage for on-chip monitoring. Alternative
brain-inspired learning method such as hyperdimensional
computing [32] enables fast and one-shot learning with low
cost binary components, and exhibits reliable operations
under extreme low signal-to-noise ratio conditions hence it
can be efficiently implemented for on-chip online usage.

7 CONCLUSION AND FUTURE WORK

CLIM is a supervised learning-based model to predict tim-
ing errors of functional units at two granularities: the bit-
level and the value-level. It considers the impact of input
operands on dynamic path sensitization (and hence timing
errors). We perform gate-level simulation on a post-layout
netlist to extract timing errors and useful ’features’ from
input data and circuit activity. We then apply a random
forest classification method to construct the model with
extracted input features and output labels. We considered
input workload, computation history, and circuit toggling
as input features to construct CLIM. For a given input
data and circuit parameter, CLIM predicts the output to
be one of two classes: {timing correct, timing erroneous}. On
average across several FUs and CPRs, its bit-level and value-
level prediction accuracy are 97% and 95% respectively. We
utilize CLIM in estimating error-tolerant application output
quality, achieving an average of 97% accuracy. CLIM-based
reliability estimation is within 2.8% deviation on average of
detailed gate-level simulation.

Our ongoing work seeks to improve the efficiency of
model building by using efficient and more advanced learn-
ing methods.

REFERENCES

[1] Amd app sdk v2.5. available: http://www.amd.com/stream.
[2] Christopher M Bishop. Pattern recognition and machine learning.

springer, 2006.
[3] Shashi Borade, Bariş Nakiboğlu, and Lizhong Zheng. Unequal

error protection: An information-theoretic perspective. IEEE Trans-
actions on Information Theory, 55(12):5511–5539, 2009.

[4] Keith Bowman, James W Tschanz, Nam Sung Kim, Janice C Lee,
Chris B Wilkerson, Shih-Lien L Lu, Tanay Karnik, Vivek K De,
et al. Energy-efficient and metastability-immune resilient circuits
for dynamic variation tolerance. IEEE Journal of Solid-State Circuits,
44(1):49–63, 2009.

[5] Keith Bowman, James W Tschanz, Shih-Lien L Lu, Paolo
Aseron, Muhammad M Khellah, Arijit Raychowdhury, Bibiche M
Geuskens, Carlos Tokunaga, Chris B Wilkerson, Tanay Karnik,
et al. A 45 nm resilient microprocessor core for dynamic variation
tolerance. IEEE Journal of Solid-State Circuits, 46(1):194–208, 2011.

[6] Michael Bushnell and Vishwani Agrawal. Essentials of electronic
testing for digital, memory and mixed-signal VLSI circuits, volume 17.
Springer Science & Business Media, 2004.

[7] Michael Carbin, Sasa Misailovic, and Martin C Rinard. Verifying
quantitative reliability for programs that execute on unreliable
hardware. In ACM SIGPLAN Notices, volume 48, pages 33–52.
ACM, 2013.

[8] Kwanyeob Chae, Saibal Mukhopadhyay, Chang-Ho Lee, and Joy
Laskar. A dynamic timing control technique utilizing time borrow-
ing and clock stretching. In Custom Integrated Circuits Conference
(CICC), 2010 IEEE, pages 1–4. IEEE, 2010.

[9] Hyungmin Cho, Larkhoon Leem, and Subhasish Mitra. Ersa:
Error resilient system architecture for probabilistic applications.
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 31(4):546–558, 2012.

13

[10] Mihir R Choudhury, Vikas Chandra, Robert C Aitken, and Kartik
Mohanram. Time-borrowing circuit designs and hardware proto-
typing for timing error resilience. IEEE Transactions on Computers,
63(2):497–509, 2014.

[11] Jeremy Constantin, Lai Wang, Georgios Karakonstantis, Anupam
Chattopadhyay, and Andreas Burg. Exploiting dynamic tim-
ing margins in microprocessors for frequency-over-scaling with
instruction-based clock adjustment. In Proceedings of the 2015
Design, Automation & Test in Europe Conference & Exhibition, pages
381–386. EDA Consortium, 2015.

[12] Thomas M Cover and Peter E Hart. Nearest neighbor pattern
classification. IEEE Transactions on Information Theory, 13(1):21–27,
1967.

[13] Florent De Dinechin and Bogdan Pasca. Designing custom arith-
metic data paths with flopoco. IEEE Design & Test of Computers,
(4):18–27, 2011.

[14] Dan Ernst, Nam Sung Kim, Shidhartha Das, Sanjay Pant, Rajeev
Rao, Toan Pham, Conrad Ziesler, David Blaauw, Todd Austin,
Krisztian Flautner, et al. Razor: A low-power pipeline based on
circuit-level timing speculation. In Annual IEEE/ACM International
Symposium on Microarchitecture, 2003., pages 7–18. IEEE, 2003.

[15] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug
Burger. Neural acceleration for general-purpose approximate
programs. In Proceedings of the 2012 45th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 449–460. IEEE
Computer Society, 2012.

[16] Matthew Fojtik, David Fick, Yejoong Kim, Nathaniel Pinckney,
David Harris, David Blaauw, and Dennis Sylvester. Bubble razor:
An architecture-independent approach to timing-error detection
and correction. In IEEE International Solid-State Circuits Conference
(ISSCC), 2012, pages 488–490. IEEE, 2012.

[17] Meeta S Gupta, Vijay Janapa Reddi, Glenn Holloway, Gu-Yeon
Wei, and David M Brooks. An event-guided approach to reducing
voltage noise in processors. In Proceedings of the Conference on
Design, Automation and Test in Europe, pages 160–165. EDAA, 2009.

[18] Fazal Hameed, Mohammad AA Faruque, and Jörg Henkel. Dy-
namic thermal management in 3d multi-core architecture through
run-time adaptation. In Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2011, pages 1–6. IEEE, 2011.

[19] Kai He, Andreas Gerstlauer, and Michael Orshansky. Circuit-level
timing-error acceptance for design of energy-efficient dct/idct-
based systems. IEEE Transactions on Circuits and Systems for Video
Technology, 23(6):961–974, 2013.

[20] Xun Jiao, Vincent Camus, Mattia Cacciotti, Yu Jiang, Christian Enz,
and Rajesh K Gupta. Combining structural and timing errors in
overclocked inexact speculative adders. In 2017 Design, Automation
& Test in Europe Conference & Exhibition (DATE), pages 482–487.
IEEE, 2017.

[21] Xun Jiao, Yu Jiang, Abbas Rahimi, and Rajesh K Gupta. Slot: A
supervised learning model to predict dynamic timing errors of
functional units. In Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2017.

[22] Xun Jiao, Abbas Rahimi, Balakrishnan Narayanaswamy, Hamed
Fatemi, Jose Pineda de Gyvez, and Rajesh K Gupta. Supervised
learning based model for predicting variability-induced timing
errors. In Proc. of NEWCAS, pages 1–4. IEEE, 2015.

[23] Andrew B Kahng and Seokhyeong Kang. Accuracy-configurable
adder for approximate arithmetic designs. In Proceedings of the 49th
Annual Design Automation Conference, pages 820–825. ACM, 2012.

[24] Andrew B Kahng, Seokhyeong Kang, Rakesh Kumar, and John
Sartori. Slack redistribution for graceful degradation under volt-
age overscaling. In Design Automation Conference (ASP-DAC), 2010
15th Asia and South Pacific, pages 825–831. IEEE, 2010.

[25] Michael Kharitonov. Cryptographic hardness of distribution-
specific learning. In Proceedings of the twenty-fifth annual ACM
symposium on Theory of computing, pages 372–381. ACM, 1993.

[26] Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth
circuits, fourier transform, and learnability. Journal of the ACM
(JACM), 40(3):607–620, 1993.

[27] Sasa Misailovic, Michael Carbin, Sara Achour, Zichao Qi, and
Martin C Rinard. Chisel: reliability-and accuracy-aware optimiza-
tion of approximate computational kernels. In Proceedings of the
2014 ACM International Conference on Object Oriented Programming
Systems Languages & Applications, pages 309–328. ACM, 2014.

[28] Patrick Ndai, Nauman Rafique, Mithuna Thottethodi, Swaroop
Ghosh, Swarup Bhunia, and Kaushik Roy. Trifecta: A nonspecula-

tive scheme to exploit common, data-dependent subcritical paths.
IEEE Trans. VLSI Syst., 18(1):53–65, 2010.

[29] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent
Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter
Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn:
Machine learning in python. The Journal of Machine Learning
Research, 12:2825–2830, 2011.

[30] Abbas Rahimi, Luca Benini, and Rajesh K Gupta. Hierarchically
focused guardbanding: an adaptive approach to mitigate pvt vari-
ations and aging. In Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2013, pages 1695–1700. IEEE, 2013.

[31] Abbas Rahimi, Luca Benini, and Rajesh K Gupta. Application-
adaptive guardbanding to mitigate static and dynamic variability.
IEEE Transactions on Computers, 63(9):2160–2173, 2014.

[32] Abbas Rahimi, Pentti Kanerva, and Jan M Rabaey. A robust and
energy-efficient classifier using brain-inspired hyperdimensional
computing. In Proceedings of the 2016 International Symposium on
Low Power Electronics and Design, pages 64–69. ACM, 2016.

[33] Abbas Rahimi, Andrea Marongiu, Rajesh K Gupta, and Luca
Benini. A variability-aware openmp environment for efficient
execution of accuracy-configurable computation on shared-fpu
processor clusters. In Proceedings of the Ninth IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System
Synthesis, page 35. IEEE Press, 2013.

[34] Sanghamitra Roy and Koushik Chakraborty. Predicting timing
violations through instruction-level path sensitization analysis. In
Proceedings of the 49th Annual Design Automation Conference, pages
1074–1081. ACM, 2012.

[35] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen
Gnanapragasam, Luis Ceze, and Dan Grossman. Enerj: Approxi-
mate data types for safe and general low-power computation. In
ACM SIGPLAN Notices, volume 46, pages 164–174. ACM, 2011.

[36] Smruti R Sarangi, Brian Greskamp, Radu Teodorescu, Jun Nakano,
Abhishek Tiwari, and Josep Torrellas. Varius: A model of process
variation and resulting timing errors for microarchitects. IEEE
Transactions on Semiconductor Manufacturing, 21(1):3–13, 2008.

[37] Yuval Tamir and Marc Tremblay. High-performance fault-tolerant
vlsi systems using micro rollback. IEEE transactions on Computers,
39(4):548–554, 1990.

[38] G Tziantzioulis, AM Gok, SM Faisal, N Hardavellas, S Ogrenci-
Memik, and S Parthasarathy. b-hive: a bit-level history-based
error model with value correlation for voltage-scaled integer and
floating point units. In Proceedings of the 52nd Annual Design
Automation Conference, page 105. ACM, 2015.

[39] Rafael Ubal, Byunghyun Janscikitg, Perhaad Mistry, Dana Schaa,
and David Kaeli. Multi2sim: a simulation framework for cpu-
gpu computing. In Proceedings of the 21st international conference
on Parallel architectures and compilation techniques, pages 335–344.
ACM, 2012.

[40] Peter Welinder, Steve Branson, Takeshi Mita, Catherine Wah, Flo-
rian Schroff, Serge Belongie, and Pietro Perona. Caltech-ucsd birds
200. 2010.

[41] Jing Xin and Russ Joseph. Identifying and predicting timing-
critical instructions to boost timing speculation. In Proceedings of
the 44th Annual IEEE/ACM International Symposium on Microarchi-
tecture, pages 128–139. ACM, 2011.

[42] Fangming Ye, Farshad Firouzi, Yang Yang, Krishnendu
Chakrabarty, and Mehdi B Tahoori. On-chip droop-induced circuit
delay prediction based on support-vector machines. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
35(4):665–678, 2016.

Xun Jiao received the dual bachelor’s degree
from Beijing University of Posts and Telecom-
munications, China and Queen Mary Univer-
sity of London, UK in 2013. He is currently
a Ph.D. student at the University of California,
San Diego. His research interests include error-
tolerant computing and machine learning.

14

Abbas Rahimi received a B.S. in computer en-
gineering from the University of Tehran, Tehran,
Iran (2010) and an M.S. and a Ph.D. in computer
science and engineering from the University of
California San Diego, La Jolla, CA, USA (2015).
Dr. Rahimi is currently a Postdoctoral Scholar
in the Department of Electrical Engineering and
Computer Sciences at the University of Califor-
nia Berkeley, Berkeley, CA, USA. He is a mem-
ber of the Berkeley Wireless Research Center
and collaborating with UC Berkeley’s Redwood

Center for Theoretical Neuroscience. His research interests include
brain-inspired computing, approximate computing, massively parallel
integrated architectures, embedded systems and software with an em-
phasis on improving energy efficiency and robustness. His doctoral
dissertation has been selected to receive the 2015 Outstanding Disser-
tation Award in the area of “New Directions in Embedded System Design
and Embedded Software” from the European Design and Automation
Association (EDAA). He has also received the Best Paper at BICT, 2017,
and the Best Paper Candidate at DAC, 2013.

Yu Jiang received the BS degree in software
engineering from Beijing University of post and
telecommunication, beijing, China, in 2010, and
the PhD degree in computer science from Ts-
inghua University, Beijing, China, in 2015. He
is currently a Postdoc researcher in the depart-
ment of computer science of University of Illinois
at Urbana-Champaign, IL, USA. His current re-
search interests include domain specific model-
ing, formal computation model, formal verifica-
tion and their applications in embedded systems,

safety analysis and assurance of cyber-physical system.

Jianguo Wang received the bachelor’s degree
from Zhengzhou University, China, in 2009 and
the Mphil degree in computer science from The
Hong Kong Polytechnic University in 2012. He is
currently a Ph.D. student at the University of Cal-
ifornia, San Diego. His research interests include
data management system and new computing
hardware.

Hamed Fatemi received the B.Sc. and M.Sc.
degrees from the Electrical and Computer Engi-
neering Department of the University of Tehran,
Tehran, Iran, and KNT in 1998 and 2001, respec-
tively. In 2007, he received the Ph.D. degree in
computer architecture from the Eindhoven Uni-
versity of Technology, Eindhoven, The Nether-
lands. He is an Innovation lead / Department
manager at NXP Semiconductors. His research
interests are in the areas of low-power design,
multi-processors, heterogeneous and reconfig-

urable systems, and variability tolerance design. Fatemi has authored
and co-authored more than 25 US patents, scientific publications and
presentations

Jose Pineda de Gyvez is a Fellow at NXP
Semiconductors where he coordinates R&D ef-
forts on low power design technologies. His in-
dustrial responsibilities are positioned at the in-
terface between design and technology. He also
holds the professorship Resilient Nanoelectron-
ics (parttime) in the Department of Electrical
Engineering at the Eindhoven University of Tech-
nology, The Netherlands. This professorship fills
a gap between industry and academia by bring-
ing industrial knowledge into classrooms, and

open innovation into NXP. Pineda was a Faculty member in the De-
partment of Electrical Engineering at Texas A&M University, USA. Dr.
Pineda has been Associate Editor for several IEEE Transactions and
is often involved in program and steering committees of international
symposiums. He is also a member of the editorial board of the Journal
of Low Power Electronics. Dr. Pineda has more than 150 publications in
the fields of low power IC design, analog signal processing, and design
for manufacturability and test. He is (co)-author of four books, and has
more than 20 US granted patents. He is a Fellow of the IEEE.

Rajesh K. Gupta received the BTech degree
in electrical engineering from the Indian Institute
of Technology, Kanpur, India, in 1984, the MS
degree in electrical engineering and computer
science from the University of California, Berke-
ley, in 1986, and the PhD degree in electrical
engineering from Stanford University, California,
in 1994. He is a Professor of computer science
and engineering at the University of California,
San Diego (UCSD), La Jolla, and holds the Qual-
comm endowed chair. His research interests

span topics in embedded and cyber-physical systems with a focus on
energy efficiency from algorithms, devices to systems that scale from
IC chips, and data centers to built environments such as commercial
buildings. He currently leads NSF project MetroInsight with the goal
to organize and use city-scale sensing data for improved services. His
past contributions include SystemC modeling and SPARK parallelizing
high-level synthesis, both of which have been incorporated into industrial
practice. Earlier, Gupta led NSF Expeditions on Variability, and DARPA-
sponsored efforts under the Data Intensive Systems (DIS) and Circuit
Realization at Faster Timescales (CRAFT) programs. Gupta and his
students have received a best demonstration paper award at ACM
BuildSys’16 , best paper award at IEEE/ACM DCOSS08 and a best
demonstration award at IEEE/ACM IPSN/SPOTS05. He currently holds
INRIA International Chair at the French international research institute
in Rennes, Bretagne Atlantique. Gupta is a Fellow of the IEEE and the
ACM.

