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ABSTRACT
Buildings account for 30% of energy use worldwide, and approxi-
mately half of it is ascribed to HVAC systems. Reinforcement Learn-
ing (RL) has improved upon traditional control methods in increas-
ing the energy efficiency of HVAC systems. However, prior works
use online RL methods that require configuring complex thermal
simulators to train or use historical data-driven thermal models that
can take at least 104 time steps to reach rule-based performance
Also, due to the distribution drift from simulator to real buildings,
RL solutions are therefore seldom deployed in the real world. On
the other hand, batch RL methods can learn from the historical
data and improve upon the existing policy without any interactions
with the real buildings or simulators during the training. With the
existing rule-based policy as the priors, the policies learned with
batch RL are better than the existing control from the first day of
deployment with very few training steps compared with online
methods.

Our algorithm incorporates a Kullback-Leibler (KL) regulariza-
tion term to penalize policies that deviate far from the previous
ones. We evaluate our framework on a real multi-zone, multi-floor
building—it achieves 7.2% in energy reduction cf. the state-of-the-
art batch RL method, and outperforms other BRL methods in occu-
pants’ thermal comfort, and 16.7% energy reduction compared to
the default rule-based control.

KEYWORDS
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1 INTRODUCTION
Buildings account for 28% of the global carbon emissions [56], and
HVAC (heating, ventilation, and air conditioning) systems account
for the majority of building energy consumption1. Modern data-
driven algorithms have the potential to improve the energy effi-
ciency of traditional HVAC control algorithms. Here we focus on
HVAC control in office buildings.

An office building is typically divided into multiple thermal
zones, each of which can be controlled locally with a variable air
volume unit. The control policy is based on sensor measurements
(temperature, humidity, CO2, airflow, etc) in the thermal zone.
Rule-based control (RBC) method is widely used to control the
actuators [51], typically in conjunction with proportional-integral-
derivative (PID) controllers [17, 33]. Such controls are interpretable
but rely on experience and rules of thumb. It becomes challenging to
develop and maintain a fine-grained RBC policy for dynamic envi-
ronments. RBC is also a reactive algorithm as it changes the control

1 https://www.eia.gov/energyexplained/use-of-energy/commercial-buildings.php
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settings based on the current measurements. We can improve the
control performance if we can forecast the thermal environment
characteristics.

We can predict thermal characteristics based on weather condi-
tions, expected usage, and thermal insulation properties. In model-
based approaches, thermal states of the building are simulated with
simplified linear models, and methods such as model predictive
control (MPC) [1, 4, 38, 39, 43, 65] and fuzzy control [7, 53] are used
to improve upon RBC policies. However, based on heating/cooling
physics, we know that thermal evolution is non-linear with respect
to indoor/outdoor conditions and depends on conditions such as
orientation with respect to the sun, use of blinds, and wall insu-
lation properties. Therefore, we can devise more accurate models
to improve control performance further. Simulators such as Ener-
gyPlus [10] and TRNSYS [29] have been designed to capture the
thermal properties of a building. But designing and calibrating such
models for a large building requires significant time and exper-
tise. With advances in sensing technologies and machine learning,
data-driven models have become popular in recent research.

Reinforcement learning (RL) methods learn via direct interaction
with the environment and thus has been studied extensively [25, 62,
67]. They are categorized into model-based RL (MBRL) [15, 42] and
model-free RL (MFRL) [9, 24, 70] algorithms. MBRL requires the
use of a simulator such as EnergyPlus [10], TRNSYS [29]. Without
the pre-training offline, their nature to take exploratory control
actions can cause occupant discomfort. MBRL relies on a thermal
model learned from historical data, converges faster than MFRL
methods. However, even with MBRL, the initial policy is worse
than the existing control policy, and it can take weeks/months
to improve and converge [16]. By contrast, batch RL can learn
directly from historical data. Previous studies have shown that
BRL methods can improve on existing policies [20] by exploiting
the behavioral policy to identify actions that maximize the reward
over an episode with TD-error update (Q-learning) while ensuring
that the chosen actions do not deviate too far from the existing
policy so the value estimation is more accurate. Typically, there
is a hyperparameter to decide the learning trade-off between Q-
learning or behavior cloning. Therefore, batch RL is a more efficient
method for deployment when historical data is available. To the
best of our knowledge, BRL methods have not been explored for HVAC
control.

We design a BRL-based solution that effectively learns from
available historical data without requiring the use of a simulator or
explicit modeling of the HVAC system. Our framework guarantees
safe system operations by avoiding random setpoint exploration
that could damage the equipment and/or make occupants uncom-
fortable.

Our main contributions are summarized as follows:
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• We propose and develop our framework, a simulation-free con-
trol algorithm for energy reduction and thermal comfort co-
optimization. Our framework learns from existing historical data
only, without requiring a simulator or complex modeling of the
space.
• Our method Batch Constrained Munchausen deep Q-learning
outperforms state-of-the-art BRL methods by penalizing policies
that deviate too far away from the previous policy. It outperforms
existing controls from the first day of deployment.
• We compare our framework with several state-of-the-art BRL
methods. Our framework reduces the energy consumption by
16.7% compared to the default control, which is 7.2% improve-
ment over the state-of-the-art, while keeping thermal comfort
during the entire evaluation period.

2 BACKGROUND AND RELATEDWORK
To the best of our knowledge, there is no previous work studying
how to co-optimize HVAC energy consumption and occupants’
thermal comfort with a completely simulation-free framework de-
ployed on real multi-zone, multi-floor building.

2.1 Model Predictive Control
MPCmethods use a model to forecast the outdoor and indoor condi-
tions and optimize for a sequence of control actions that maximizes
the given objective. MPC has been studied by several prior works
for HVAC control. Aswani et al. [1] use learning-based MPC to
control the room temperature to optimize energy consumption.
Beltran et al. [4] use occupancy prediction models derived from
occupancy data traces and minimize energy consumption while
staying within the comfort bounds of the occupants. Maasoumy et
al. [39] propose a model-based hierarchical control strategy that
balances comfort and energy consumption. They linearize their
thermal dynamics model around its operating point and use an
LQR supervisory controller that selects the optimal setpoints for
the lower level PID controllers. Privara et al. [43] interconnect
building simulation software and traditional identification methods
to avoid the statistical problems with data gathered from the real
building. Winkler et al. [65] develop a data-driven gray-box model
whose parameters are learned from building operational data. To-
gether with weather forecast information, this data is fed into the
framework to minimize energy costs while satisfying user comfort
constraints.

Overall, the known issues of MPC are that it requires an accurate
dynamicmodel, makes convexity assumptions, and the computation
cost of computing each control decision is high [3]. RL solutions
have been shown to overcome these limitations and outperform
MPC methods [41], and the computation cost of a control decision
is low as it only requires a neural network inference.

2.2 Reinforcement Learning
2.2.1 Online RL Methods. Researchers have been studied exten-
sively for HVAC control with online RL methods [25, 62, 67]. Zhang
et al. [69] jointly optimize visual comfort, thermal comfort, and en-
ergy consumption by training for ∼12𝐾 days in a simulator. OCTO-
PUS [15] co-optimizes HVAC, lighting, blinds, and window systems
and needs ∼3.5𝐾 days of training. Valladares et al. [57] co-optimize

thermal comfort and indoor air quality requiring ∼3𝐾 days of train-
ing. Nagarathinam et al. [41] train a multi-agent policy by taking
into account water-side chiller control, and reducing convergence
time to 2 years (∼700 days) using domain knowledge-based pruning.
DeepComfort [24] uses DDPG [35] to co-optimize thermal comfort
and energy consumption with 104 hour (∼417 days) for training.
MBBC [16] compares MBRL and MFRL methods with multi-zone
control and shows that at least 104 of 15-minute time steps (∼100
days) are needed to converge. Zhang et al. [68] train in an online
fashion to control airflow and temperature. They also take ∼100
days to converge.

All prior works need a simulator or a data-driven model to
predict the thermal dynamics. Zhang et al. [70] use A3C [40] on
real building deployment with model pre-trained on a simulator.
HVACLearn [42] proposes an RL-based occupant-centric controller
(OCC) for thermostats using tabular Q-Learning with EnergyPlus
simulator. Raman et al. [44] implement Zap-Q [14] with 𝜖-greedy
exploration and compare the model with MPC methods using Ener-
gyPlus. Lu et al. [37] compare on-policy and off-policy RL models
with simulated air-conditioned buildings with data-driven models.

Online RL methods, either model-free or model-based, rely on
exploration of the state-action space to improve the control policy.
Model-free approaches are particularly data inefficient (months
to years of convergence time), and therefore, require the use of
a simulation model to learn a policy that can be practically de-
ployed. But deploying such policies to a real building requires
careful calibration of the simulation model, which is prohibitively
time-consuming and expensive. Model-based methods are compa-
rably data-efficient and can use a thermal dynamics model trained
with historical data. However, even these methods require weeks
to months of real-world interaction for convergence. The initial
control policy performance is considerably worse than the exist-
ing rule-based policy [16, 41], and becomes a large impediment to
adoption. To setup an EnergyPlus model, we need building-specific
information, such as materials used to construct the building, that
require consulting blueprints. Even after modeling with such de-
tails, a separate calibration step is required to ensure the accuracy
of the model. Whereas for our reward function model, we used
standard heat transfer equations and already available sensor data
from the building management system. The reward function can
be reused in a new building, whereas EnergyPlus will require redo-
ing the work again. Without a model to simulate airflow, we use
the readings and set points from the building management system.
These are standard data points available in modern buildings, and
our method can be reused as is in other buildings.
2.2.2 Offline RL Methods. Offline methods have not been explored
much yet in the building controls domain. GNU-RL [9] imple-
ments behavior cloning for HVAC control. In contrast to behavior
cloning [52], where the agent simply learns to copy the behavioral
policy with an ML model, the BRL method is able to learn from
the existing data with Q-update and compensate for the lack of
diversity in the buffer by perturbing the selected action with a per-
turbation network. BRL maximizes the values returned by selecting
policy that improves upon the existing policy, rather than imitating
it.

Previously, Ruelens et al.’s works focus on electricity cost opti-
mization [49], demand response [48], and energy efficiency of heat
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pump [50] using fitted Q-iteration (FQI [46]). Vazques et al. [58, 59]
balance comfort and energy consumption of a heat pump using FQI.
Yang et al. [66] implement Batch Q-Learning for low exergy build-
ings. The closest work to ours is Wei et al.’s work [63], where they
control airflow using offline training using a modified Q-learning
algorithm, where they clip and shrink the reward value. Unlike our
method, the experiments are done in simulators, do not control
zone temperature setpoint, and only consider temperature as a
proxy for thermal comfort.

Algorithms such as FQI, Batch Q-learning, and Wei et al.’s DQN
heuristic are all based on pure off-policy algorithms. Fujimoto et
al. [23] show that off-policy methods exacerbate the extrapolation
error in a completely offline setting. The errors occur because the Q-
network is trained on historical data but exploratory actions yield
policies which are different from the behavioral ones. They propose
Batch Constrained Q-learning (BCQ) [23] which restricts selected
actions to be close to those in the historical data and outperforms
prior approaches. BCQ uses a Variational AutoEncoder (VAE) [28]
to reconstruct the predicted actions given current states according
to existing data.

BCQ is designed for complete offline, off-policy learning to pe-
nalize policies that are far from the behavioral policies in the re-
play buffer. We build on top of the BCQ algorithm to further con-
strain new policy to be close to the previous one. We enforce this
constraint through Kullback-Leibler (KL) divergence between the
learned policy and historical policy [61]. We show that our algo-
rithm performance is more stable than BCQ in our real building
evaluation.

We use the existing dataset as the prior experience, since the
rules are made by domain experts, its behavioral policy is safe cf.
random initialized online policy. In this paper, we focus on the
performance of the algorithm in the initial days (one week) of
deployment and leave the long-term performance evaluation as
future work.

3 DESIGN OF OUR FRAMEWORK
3.1 BRL-based Control Framework Setup
As shown in Fig. 1, we first obtain historical data and process them
into replay buffer containing the transitions tuples. At each time
step, the BRL model will randomly sample a mini-batch from the
replay buffer and train the target networks with the transitions
sampled. Periodically (according to the eval_freq in Alg. 1), we
evaluate the trained agent’s policy (the select_action function in
Alg. 2) on real building zones to observe the states from our system’s
readings and calculate the reward. The average rewards over time
are shown in Fig. 5.

We use the episodic formulation as this is the standard procedure
in BRL literature [23, 32, 36]. In our formulation, the episode ends
if the predicted thermal comfort is out of the thermal comfort
range, i.e. absolute value larger than 0.5. Therefore, the agent is
trained for an arbitrarily long episode length as long as it does not
impact comfort. If we use a fixed episode length such as 24 hours,
the agent will optimize for that period. We use a time step of 9
minutes because that is the data-writing period for our building
management system. We choose the minimum possible time step

to minimize system response time and reduce any discomfort to
occupants.

We represent the agent and its environment as aMarkovDecision
Process (MDP) defined by a tuple,𝑀B = (S,S′,A, 𝑃, 𝑅,𝛾 ), where
A is the action space in the batch B, S is the state space, S′ is
the arriving state space where ∀𝑠 ′ ∈ S′ corresponds to 𝑠 ∈ S
at a certain time step 𝑡 such that 𝑠 = 𝑠𝑡 , 𝑠 ′ = 𝑠𝑡+1. 𝑃 (𝑠 ′ |𝑠, 𝑎) is the
transition distribution,𝑅(𝑠, 𝑎) is the reward function, and𝛾 ∈ [0, 1) is
the discount factor. The goal of our BRL model is to find an optimal
policy 𝜋∗(𝑠) = argmax𝑎 𝑠.𝑡 .(𝑠,𝑎)∈B 𝑄

𝜋
B (𝑠, 𝑎), which maximizes the

expected accumulative discounted rewards.
More specifically, we have the following:

• State: We use the following attributes for the RL process to eval-
uate the policy: indoor air temperature, actual supply airflow,
outside air temperature, and humidity. These states include the
features needed for thermal comfort estimation 𝑠𝑇𝐶𝑡 and those
that represent the responses of actions as RL states 𝑠𝑅𝐿𝑡 .
• Action: We control two important parameters, namely, zone air
temperature setpoint (𝑎𝑍𝑁𝑇𝑡 ) and actual supply airflow setpoint
(𝑎𝑆𝑢𝑝𝑡 ). Both are in continuous space and the action spaces are
normalized in the range of [−1, 1].
• Environment: Real building HVAC zones across three different
floors. Every room is a single HVAC zone, and all these rooms
are used as lab space and work office.
• Reward: We monitor the thermal states of the space as well as
the thermal comfort index predicted by a regression model, and
then make control decisions with the actions selected by the BRL
model. Our reward function penalizes high HVAC energy use and
discourages a large absolute value of the thermal comfort index,
which indicates discomfort to occupants. Our reward function at
time step 𝑡 is:

𝑅𝑡 = −𝛼 |𝑇𝐶𝑡 |−𝛽𝑃𝑡 , (1)

where 𝛼 , 𝛽 are the weights balancing between different objectives
and could be tuned to meet specific goals, 𝑇𝐶𝑡 is the thermal
comfort index at time 𝑡 , 𝑃𝑡 is the HVAC power consumption at
time 𝑡 . We compute 𝑃𝑡 attributed to a thermal zone using heat
transfer equations [2]. The DRL agent co-optimizes HVAC energy
reduction and occupants’ thermal comfort.

3.2 Thermal Comfort Prediction
As we need to calculate the thermal comfort level as required by
our reward function, we adopt the widely used predicted mean
vote (PMV) [19] measure as our thermal comfort index. In this
metric, there are degrees of satisfaction, ranging from −3 (cold) to
3 (hot), where PMV within the range from −0.5 to 0.5 is considered
thermal-comfortable.

We adopt the ASHRAE RP-884 thermal comfort data set [13] and
train a simple gradient boosting tree (GBT) model [27] to predict
the thermal comfort by taking the current thermal states given
by our building system in real-time. We show the evaluation of
the effectiveness in Fig. 2 with such a simple GBT-based thermal
comfort index.

3.3 Batch Reinforcement Learning for Control
We take a BRL-based method, namely, batch-constrained deep Q-
learning (BCQ) [23] as our foundation and make improvements
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Real multi-zone 
building environment

Replay buffer

BRL Model: 
Finding the optimized policy that maximizes returns

Regression Model : 
Predict thermal comfort 

with current thermal states

Selected action decided by a VAE model, 
a perturbation model 𝜉!,  two Q-networks, 

and a set of hyperparameters

𝑠"
RL states feedback to calculate reward

𝑇𝐶"
Thermal comfort index

𝑃𝑀𝑉"
PMV features

Batch data used 
as prior knowledge 

Figure 1: Overview: Our batch reinforcement learning model selects actions that co-optimize thermal comfort for occupants
and energy consumption of HVAC system.

on it. BCQ is a pure offline, off-policy RL method that avoids the
extrapolation errors induced by the incorrect value estimation of
out-of-distribution actions selected out of existing dataset.

As illustrated in Fig. 1, for each time step 𝑡 , we obtain state in-
formation from the sensors in the building. To only calculate the
reward but not updating the models. BCQ first samples a mini-
batch of data (the size of the mini-batch is set as a hyperparameter)
from the entire set of historical data. Then, it trains a parametric
generative model 𝐺𝜔 , a conditional VAE on the batch to model the
distribution by transforming an underlying latent space. The en-
coder 𝐸𝜔1 (𝑠, 𝑎) takes a distribution of state-action pairs and outputs
the mean 𝜇 and standard deviation 𝜎 of a Gaussian distribution
N (𝜇, 𝜎). A latent vector 𝑧 sampled from the Gaussian is passed to
the decoder 𝐷𝜔2 (𝑠, 𝑧) which outputs an action. The loss function of
VAE consists of two parts: reconstruction loss and the KL regular-
ization term.

L𝑟𝑒𝑐𝑜𝑛 =
∑

(𝑠,𝑎)∈B
(𝐷𝜔2 (𝑠, 𝑧) − 𝑎)2, 𝑧 = 𝜇 + 𝜎 · 𝜖, 𝜖 ∼ N (0, 1)

L𝐾𝐿 = 𝐷𝐾𝐿(N (𝜇, 𝜎)| |N (0, 1)),
L𝑉𝐴𝐸 = L𝑟𝑒𝑐𝑜𝑛 + 𝜆L𝐾𝐿 .

VAE here aims to produce only actions which are similar to existing
actions in the batch given the current state. The purpose of the
perturbation model 𝜉𝜙 (𝑠, 𝑎,Φ) is to increase the diversity of seen
actions, it adjusts the value of the selected action 𝑎 in the range of
[−Φ,Φ]. It could compensate for the lack of diversity in the batch
data, as a trade-off of inaccurate value estimation. By adjusting the
hyperparameters 𝑛 and Φ, it could behave similarly to behavior
cloning with 𝑛 = 1 and Φ = 0, or similarly to traditional Q-learning
when 𝑛 →∞ and Φ→ 𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛 .

𝜙 ← argmax
𝜙

∑
(𝑠,𝑎)∈B

𝑄𝜃1 (𝑠, 𝑎 + 𝜉𝜙 (𝑠, 𝑎,Φ)), 𝑎 ∼ 𝐺𝜔 (𝑠).

At the core of BCQ is the value estimation networks, a pair of Q-
networks 𝑄𝜃1 (𝑠, 𝑎) and 𝑄𝜃2 (𝑠, 𝑎). By taking a weighted minimum
between the two values as a learning target 𝑦 for both networks.
On the other hand, for the actor network, at first, 𝑛 actions are
sampled with respect to the generative model, and then adjusted by
the target perturbation model, before being passed to each target
Q-networks for updates:

𝑦 = 𝑟 + 𝛾 max
𝑎𝑖

[
𝜆 min
𝑗=1,2

𝑄
𝜃
′
𝑗
(𝑠 ′, 𝑎𝑖 ) + (1 − 𝜆) max

𝑗=1,2
𝑄
𝜃
′
𝑗
(𝑠 ′, 𝑎𝑖 )

]
, (2)

where 𝑟 is the reward, 𝛾 is the discount factor, 𝜆 is the minimum
weighting in double-Q learning, 𝜃 𝑗=1,2 are weights of the two critic
Q-networks.

We propose an improvement on the BCQ algorithm, called Batch
Constrained Munchausen RL (BCM), that encourages the agent to
update policy similarly to the previous one using a regularization
term in the Q-update. With respect to other aspects, BCM inherits
BCQ’s characteristics and acts as an intermediate state of behavior
cloning and Q-learning.

The idea of the BCM algorithm is the following: we adopt the reg-
ularization term inMunchausen RL (M-RL) [61] which penalizes the
policies which deviate far from the previous policy with Kullback-
Leibler (KL) divergence [31, 60]. M-RL utilizes the current policy as
one of Q-update’s learning signals. 𝐾𝐿(𝜋1 | |𝜋2) = ⟨𝜋1, ln𝜋1 − ln𝜋2⟩.
The other term added in M-RL is the entropy term which penalizes
the policies that are too far away from the uniform distribution,
where H (𝜋 ) = −⟨𝜋, ln𝜋⟩. In offline settings, this term does not
help improve the Q-update since we cannot accurately estimate
uniform policy if we have only static data. We do not encourage
exploration as the online mode in the original M-RL settings. Our
problem is focused on conservative and safe policies exclusively
selected from the batch with a small amount of perturbation. It
helps to avoid the lack of diversity within state-action visitation in
the batch distribution.

𝑦 = 𝑟 + 𝛼𝑚
[
𝜏𝑚 ln𝜋

𝜃
(𝑎𝑡 |𝑠𝑡 )

]0
𝑙0

+ 𝛾 max
𝑎𝑖

[
𝜆 min

𝑗=1,2
𝑄𝜃′

𝑗
(𝑠′, �̃�𝑖 ) + (1 − 𝜆) max

𝑗=1,2
𝑄𝜃′

𝑗
(𝑠′, �̃�𝑖 )

]
,

(3)

where 𝜋
𝜃

= 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝜃

𝜏 ), the target Q after soft clipping in double
Q-learning, 𝛼𝑚 is the M-RL scaling parameter, 𝜏𝑚 is the entropy
temperature parameter, and 𝑙0 is the clipping value minimum, since
the log-policy term is not bounded and can cause numerical is-
sues if the policy becomes too close to deterministic. We replace
𝜏 𝑙𝑛 𝜋 (𝑎 |𝑠) by [𝜏 𝑙𝑛 𝜋 (𝑎 |𝑠)]0

𝑙0
, where [·]𝑦𝑥 is the clipping function.

The other added term in original M-RL algorithm is the entropy
term which encourages policies to be close to uniform distribu-
tion. We do not use it as it is not applicable for offline settings [61].
Once we choose the action using BCM, we adjust the correspond-
ing setpoints through a building operating system (BOS) [30, 64].
The environment reflects the real response of action applied with
a time delay 𝑑 , so our framework waits for 𝑑 to get data 𝑠𝑡 from
the sensors. Also, a PMV feature vector 𝑃𝑀𝑉𝑡 is fed into the re-
gression model for thermal comfort prediction. According to the
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Algorithm 1: HVAC control via our framework
Input :Batch data B𝑓 for a certain floor 𝑓 , time horizon 𝑇 ,

floor set F , zone/room setZ, and delayed
response time 𝑑 , target network update rate 𝜏 ,
mini-batch size 𝑏, max perturbation to selected
actions Φ, number of sampled actions 𝑛, minimum
weighting 𝜆, evaluation frequency 𝑒𝑣𝑎𝑙_𝑓 𝑟𝑒𝑞,
M-RL scaling factor 𝛼𝑚 ∈ [0, 1], and entropy
temperature parameter 𝜏𝑚

Output :Reward, next state, and action selected by BCM
Initialize: HVAC Environment 𝐸𝑛𝑣 , RL agent BCM
𝑑𝑎 = 𝑑𝑖𝑚(𝑎), 𝑑𝑠 = 𝑑𝑖𝑚(𝑠);
for 𝑓 ∈ F do

𝐵𝐶𝑀𝑓 = 𝐵𝐶𝑀(𝑑𝑠 , 𝑑𝑎, 𝛾, 𝜏, 𝜆, 𝜙, 𝛼𝑚, 𝜏𝑚);
for 𝑧 ∈ Z do

0← t;
while 𝑡𝑟𝑎𝑖𝑛_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 < 𝑇 do

𝐵𝐶𝑀𝑓 .𝑡𝑟𝑎𝑖𝑛(B𝑓 , 𝑏, 𝑛);
if 𝑡%𝑒𝑣𝑎𝑙_𝑓 𝑟𝑒𝑞 == 0 then

𝑠𝑧𝑡 = 𝐸𝑛𝑣𝑧 .𝑔𝑒𝑡𝑇ℎ𝑒𝑟𝑚𝑎𝑙𝑆𝑡𝑎𝑡𝑒(𝑡 );
𝑇𝐶𝑧𝑡 = 𝐸𝑛𝑣𝑧 .𝑔𝑒𝑡𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑇𝐶(𝑠𝑧𝑡 );
𝑎𝑧𝑡 = 𝐵𝐶𝑀𝑓 .𝑠𝑒𝑙𝑒𝑐𝑡_𝑎𝑐𝑡𝑖𝑜𝑛(𝑠𝑧𝑡 );
𝑠𝑧
𝑡+1, 𝑟

𝑧
𝑡 = 𝐸𝑛𝑣𝑧 .𝑠𝑡𝑒𝑝(𝑎𝑧𝑡 , 𝑠

𝑧
𝑡 , 𝑑);

𝑡 += 1 ;
end

end
end

end

prediction of regression model 𝑇𝐶𝑡 and the RL states 𝑠𝑡 , we calcu-
late the reward using Eq.(1). We repeat this process until reaching
the maximum number of time steps𝑇 . Details of the HVAC control
via BCM algorithm are described in Algorithm 1.
4 EVALUATION
4.1 Data Collection and Pre-processing
The data we use from all the sensors and control points are recorded
every 9 minutes via a BOS. We obtain data of an entire year, from
the beginning of July 2017 to the end of June 2018 of fifteen rooms
across three different floors in a building. The batch for each floor, or
the buffer, contains around 200𝐾 transitions (2F:∼260𝐾 , 3F:∼193𝐾 ,
4F:∼172𝐾), and it might differ from one to another due to varied
system maintenance duration throughout the year. Since the rooms
on the same side of a floor often share similar thermal dynamics,
we thus create batch data for each floor to ensure that the replay
buffer reflects each variable air volume (VAV)’s thermal dynamics
precisely. We set each room to its maximum occupancy, which
is obtained from our campus facility information management
system, and in evaluation, we assume full occupancy the entire
time. We could easily modify the problem formulation by taking
occupancy into account in both our policy and reward function. The
airflow CFM (cubic feet per minute) needed is just multiplied by the
number of people in the room. However, at this moment we have
no occupancy sensor data, so we assume the most strict condition
of full capacity. We standardize our actions in a batch to the range
of [−1, 1] as a standard procedure in the RL setup. For each action

Algorithm 2: BCM training algorithm
Input :Batch data B𝑓 for a certain floor 𝑓 , target network

update rate 𝜏 , mini-batch size 𝑁 , max perturbation
to selected actions Φ, number of sampled actions 𝑛,
minimum weighting 𝜆, evaluation frequency
𝑒𝑣𝑎𝑙_𝑓 𝑟𝑒𝑞, M-RL scaling parameter 𝛼𝑚 , and
entropy temperature parameter 𝜏𝑚

Output :Updated target networks
Initialize: RL agent BCM, Q networks 𝑄𝜃1 , 𝑄𝜃2 , VAE
generative network 𝐺𝜔 = {𝐸𝜔1 , 𝐷𝜔2 }, perturbation
network 𝜉𝜙 , random parameter 𝜔,𝜙, 𝜃1, 𝜃2, and target
networks 𝑄

𝜃
′
1
, 𝑄
𝜃
′
2
, 𝜉𝜙′ with 𝜃

′
1 ← 𝜃1, 𝜃

′
2 ← 𝜃2, 𝜙

′ ← 𝜙

for 𝑡 ← 0 to 𝑇 do
Sample mini-batch 𝑁 transitions (𝑠, 𝑎, 𝑟, 𝑠 ′) from B𝑓 ;
𝜇, 𝜎 = 𝐸𝜔1 (𝑠, 𝑎), 𝑎 = 𝐷𝜔2 (𝑠, 𝑧), 𝑧 ∼ N (𝜇, 𝜎)
𝜔 ← argmin𝜔

∑
(𝑎 − 𝑎)2 + 𝐷𝐾𝐿(N (𝜇, 𝜎)| |N (0, 1))

Sample 𝑛 actions: {𝑎𝑖 ∼ 𝐺𝜔 (𝑠 ′)}𝑛
𝑖=1;

Perturb each action: {𝑎𝑖 = 𝑎𝑖 + 𝜉𝜙 (𝑠 ′, 𝑎𝑖 ,Φ)}𝑛
𝑖=1;

Set value target 𝑦 (Eqn.3);
𝜃 ← argmin𝜃

∑
(𝑦 −𝑄𝜃 (𝑠, 𝑎))2;

𝜙 ← argmax𝜙 𝑄𝜃1 (𝑠, 𝑎 + 𝜉𝜙 (𝑠, 𝑎,Φ)), 𝑎 ∼ 𝐺𝜔 (𝑠);
Update target networks: 𝜃

′
𝑖
← 𝜏𝜃 + (1 − 𝜏)𝜃

′
𝑖
;

𝜙
′ ← 𝜏𝜙 + (1 − 𝜏)𝜙

′
;

end

Figure 2: Performance comparison of regression models for
predicting thermal comfort based on PMV

sample 𝑎𝑖 , it is converted to 𝑧𝑖 such that 𝑧𝑖 = (𝑎𝑖 − 𝜇)/𝑠 , where
𝜇 is mean, 𝑠 is the standard deviation of the batch. In the replay
buffer, there are several main matrices required: action A, state
S, next state S′, reward R (calculated with our thermal comfort
prediction model, power consumption, and RL states), index I
(which records the indices as time stamps), and episode terminal
statusN (it labels if an episode is terminated or not—in our setting
when the predicted thermal comfort metric does not satisfy the
criteria, i.e. |𝑃𝑀𝑉 |> 0.5, the episode is considered as terminated). To
summarize, the batch data is a set consisting of the above-mentioned
matrices, i.e. B = {A,S,S′,R,I,N}.

We use Intel Xeon Gold 6230 CPUs (2.10GHz) and NVidia Quadro
RTX 8000 GPUs with Ubuntu 18.04 OS for our experiments.

4.2 Thermal Comfort Prediction
We compare five different regression models for predicting thermal
comfort, namely Linear Regression (LR), Support Vector Regression
(SVR), Bayesian Regression (BR), Deep Neural Network (DNN), and
Gradient Boosting (GB) (Fig. 2). The input features of the models are
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Figure 3: Importance of feature to thermal comfort via mu-
tual information regression analysis. The features are cloth-
ing level (Clo), metabolic rate (Met) indoor air temperature
(Air temp.), mean radiant temperature (MRT), relative hu-
midity (RH), and air velocity (Air velo.).

zone air temperature, humidity, mean radiant temperature (MRT),
air velocity, metabolic rate (Met), and clothing insulation (Clo). We
set clothing level as "typical summer indoor clothing". Metabolic
rate is set as "typing" where the zones evaluated are all student lab
and office spaces. There are in total 30650 data points with complete
feature information in the ASHRAE RP-884 thermal comfort data
set [13] we adopted for evaluation. All models are trained and tested
with 10-fold cross-validation. Hyperparameters optimization is con-
ducted via either grid search or Bayesian optimization. According
to Fig. 2, the best model is the gradient boosting tree [27] with
an MSE of 1.147, which supports our choice of GB-based model
to predict thermal comfort index for the RL reward function. It is
reasonable that the gradient boosting method outperforms the deep
learning counterpart on tabular data because of selection bias and
hyperparameter optimization [54] The MSE metrics reported are
averaged with 3 runs for each model.

4.3 Importance of Airflow Control
Few prior works quantitatively study the importance of airflow
control in maintaining occupants’ thermal comfort. Almost all re-
search focuses on temperature and humidity control for occupants’
thermal comfort. Here, we empirically analyze how airflow impacts
thermal comfort based on the PMV features.

We conduct analysis via mutual information-based regression.
Between two random variables (𝑋,𝑌 ), the dependency of these two
variables, which is a non-negative value, is calculated as:

𝐼 (𝑋 ;𝑌 ) =
∫
𝑦

∫
𝑥

𝑝(𝑋,𝑌 )(𝑥,𝑦)𝑙𝑜𝑔
(
𝑝(𝑋,𝑌 )(𝑥,𝑦)
𝑝𝑋 (𝑥 )𝑝𝑌 (𝑦)

)
𝑑𝑥 𝑑𝑦,

where 𝑝(𝑋,𝑌 ) is the joint probability density function of 𝑋 and
𝑌 , and 𝑝𝑋 , 𝑝𝑌 are the corresponding marginal density functions.
It is equal to zero if and only if two random variables are inde-
pendent, and higher values mean higher dependency [47]. Fig. 3
indicates that air velocity is the second most important factor after
air temperature and mean radiant temperature (MRT) (here we
approximate MRT with air temperature [12]). Thus, by controlling
zone air temperature and airflow (air velocity can be converted to
airflow rate with room area), we control the two most important
features affecting occupants’ thermal comfort.

Figure 4: Performance comparison with VAE simulators

4.4 Preliminary Experiments
We first investigate how BRL methods are compared with online RL
methods, we compare these BRL methods with the state-of-the-art
online RL methods: TD3 [22] and DDPG [35]. Our approach is to
build a data-driven simulator environment with two VAEs. The first
one is for predicting the RL and thermal comfort states. The second
one is to predict the power/energy consumption. These two VAEs
function as the thermal states simulator.

We evaluate with 200 episodes and the evaluation frequency is
every five time steps. We run each algorithm with three randomly
initialized initial conditions in the range of our dataset. As we see in
Fig. 4, the solid line is the average of these three runs, and the half-
transparent regions indicate the range of these runs. The results
show that the performance ranking among these BRL methods:
PQL>BEAR>BCQ/BCM>DDPG>TD3. While BRL methods reach a
stable state, online RL methods TD3 and DDPG are still exploring
new policies, and thus yield a continuously declining performance
in a short period of time. These BRL methods (details of PQL and
BEAR are elaborated in 4.5) learn exclusively from the batch provide
stable, and safe policies. The reason why performance is constant is
that in the simulation environment the responses of the system are
deterministic which is different from the real building environments.
(Fig. 5) In real building systems, the responses are stochastic.

4.5 Baseline Methods
4.5.1 State-of-the-art BRLMethods. After BCQwas proposed, there
are several studies outperforming it in the OpenAI Gym [6] simula-
tion environments. We implement these methods as baselines to be
compared with BCM.
• Bootstrapping Error Accumulation Reduction (BEAR) [32]: BEAR
identifies bootstrapping error as a key source of BRL instability. It
is due to bootstrapping of actions that lie outside of the training
data distribution. The algorithm mitigates the out-of-distribution
action selection by searching over the set of policies that is akin
to the behavior policy. BEAR’s ultimate goal is to search over
the set of policies Π, which shares the same set of values that
the random variable can take on as the behavior policy. And
its performance is outstanding with the medium-quality static
dataset (medium-quality means by training an agent with half
amount of time steps cf. expert RL agent/human expert or when
the agent is trained to yield half the average return cf. the expert
agent).
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Figure 5: Reward comparison of various algorithms

• Pessimistic Q-Learning (PQL) [36]:While BRL yields a new policy
other than those in the batch, it might visit states and actions that
are outside the distribution of the batch data. In addition, function
approximation with a limited number of samples leads to overly
optimistic estimates. PQL thus uses pessimistic value estimates in
the low-data regions in the Bellman optimality equation as well
as the evaluation back-up. It can yield more adaptive and stronger
guarantees when the concentrability assumption does not hold.
PQL learns from policies that satisfy a bounded density ratio
assumption akin to the on-policy policy gradient methods. The
approach of PQL to improve from BCQ’s architecture is that they
add a state-VAE to predict the arriving state given current state-
action pair, filtering state-action distribution �̃�(𝑠, 𝑎) instead of
�̃�(𝑠 |𝑎). The filtration is implemented by setting a hyperparameter
𝑏 as the 2𝑛𝑑 percentile of the state-VAE Evidence Lower Bound
(ELBO). If the ELBO is larger than 𝑏 then Q-update is executed,
otherwise, it is not executed.

4.5.2 Comparison Methodology. We run each algorithm in a single
room on each floor in the same week so that outside air temperature
(OAT) is the same. For instance, in one week we run our BCM in
rooms in the same stack on different floors, e.g. 2144, 3144, and
4144, and at the same time a different BRL algorithm, e.g. BEAR,
is running in rooms in a different adjacent stack, say, 2146, 3146,
and 4146. In each room, we run the algorithm for 1, 000 time steps,
which is about one week. To reduce performance variations, we
evaluate each algorithm in three different rooms (one room from
each floor: 2F, 3F, and 4F). These rooms have the same functionality
(lab or office spaces) and are of roughly the same size and occupancy
capacity. The entire evaluation time of all the experiments is from
September 28th to October 19th, 2021.

Appendix A.1 lists the hyperparameters for each method.

4.6 Results and Analysis
4.6.1 Reward Comparison. Fig. 5 shows the evaluation results of
each algorithm, where each solid line is the average reward of all
runs for the same method; semi-transparent bands represent the
range of all runs for a particular algorithm. And gray dotted vertical
lines indicate 00:00AM of each day. The horizontal black dotted line
is the average reward in the buffer. It shows that BCM outperforms
other methods by providing a relatively stable learning curve.

Figure 6: We find the top-5 most similar weeks regarding
OAT to our experiment week (last figure) for evaluating en-
ergy consumption and thermal comfort.

PQL constrains the Bellman update over state-action pairs that
are sufficiently covered by the conditional probability of action
given state when generating the data. It adds a state-VAE and a
statistical filtration over BCQ’s architecture with pessimistic value
approximation, which might overkill near-optimal policy that is
without enough visitation, however, as time evolves, PQL gradu-
ally learns better. BEAR is only guaranteed to outperform BCQ on
medium-quality data sets collected from a partially trained policy –
a middle ground between optimal policy and random policy. How-
ever, in our case, the replay buffers are closer to the data generated
with expert policy. This explains the outcomes in a reasonable way.
BCQ, as an ablation version of our BCM algorithm, yields a compa-
rable performance as BCM but fails to keep a stable outcome due
to the lack of a strong learning signal.

The comparison between algorithms in our experiments is dis-
tinct from the results shown in the original papers, where PQL
outperforms BCQ and BEAR in two out of the three simulated
environments. By contrast, on our real building HVAC system,
BCQ provides a more stable and continuously improving perfor-
mance than the other two BRL methods. This is because all those
experiments were conducted in simulation environments where
data are effectively unlimited, consequences for poor actions are
non-existent, and system dynamics are clean and often determinis-
tic [18]. However, in real-world problems, systems are stochastic
and non-stationary. It is not guaranteed that these algorithmswould
behave the same or similar to simulated cases in these settings.

4.6.2 Energy Consumption and Thermal Comfort Comparison. Out-
side Air Temperature (OAT) is a key factor affecting zone tempera-
ture; therefore, it affects both thermal comfort and energy usage
of the HVAC system. It is thus reasonable to compare energy con-
sumption during baseline time periods with the most similar OAT
trend to the period during which these BRL methods are evaluated.
To do so, we adopt Dynamic Time Warping (DTW) [5] to find his-
torical weeks with similar OATs, as DTW is a widely used method
to measure the similarity of time-series data of different lengths.
In addition to considering the “shape” of historical OAT, we also
consider the mean OAT difference between our experiment time
period and historical weeks. In summary, we find historical time
periods whose OAT trend is similar and with close average weekly
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Figure 7: Energy consumption and thermal comfort compar-
isons among different control methods

Figure 8: Thermal comfort achieved by our BCMmodel dur-
ing evaluation

OAT to our experiment week. Fig. 6 shows an example of historical
weeks found using the above metrics. In this figure, a tuple of (min,
max) OAT is labeled on top of each week’s OAT data.

Once we have the top-5 weeks with the most similar OAT trend
to our experiment period, we compare all methods and estimate
energy consumption and thermal comfort.

In Fig. 7, we normalize the historical energy use to one as refer-
ence. BCM consumes the least energy comparedwith othermethods.
A 16.7% of energy consumption reduction is achieved, and BCQ
also outperforms RBC by 9.5%. On the other hand, the occupants’
thermal comforts are shown in real average absolute values. The
standard deviations (marked as error bars) of all BRL methods are
smaller than their historical counterparts.

We also examine the thermal comfort during the entire time pe-
riod for every experiment and keep track of changes and violations
as time evolves. Fig. 8 is an example showing that BCM maintains
thermal comfort level persistently during the entire evaluation time
period.

4.7 Sensitivity Analysis
4.7.1 Perturbation to Action. In our main evaluation, we used Φ =
0.05, which is the parameter controlling the degree of perturbation
applied to selected actions. To inspect how perturbation impacts
the performance of BCM, we evaluate two different values of 0.1
and 0.2 for Φ. The result in Fig. 9 indicates that for Φ = 0.1, on
average, does not yield a higher reward than Φ = 0.05. For Φ = 0.2,

Figure 9: Effect of perturbation to selected actions

Figure 10: Effect of buffer data size

Figure 11: Same Season vs. Entire Year

it cannot learn efficiently until around 700 time steps due to too
large the range of action spaces to select from. In our buffer, there
is enough diversity since it is extracted with an entire year of data.
Thus, we choose Φ = 0.05 in our main experiment.

4.7.2 Amount of Data. We randomly sample data points by a frac-
tion of { 1

10 ,
1

100 ,
1

1000 } and evaluate rooms on the same floor in the
same week to observe the impact. Fig. 10 shows the information loss
from smaller buffer data. E.g. for the 1

1000 one, it hardly reaches the
average of the original buffer. For the 1

10 and 1
100 cases, they show

comparable performances but have difficulties being consistent.

4.7.3 Diversity of Batch Data. Originally, we use the thermal states
of a set of rooms/zones from an entire year as our batch data.
Intuitively, a replay buffer containing data from the same season as
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Figure 12: Out-of-batch (OOB) vs In-batch

Figure 13: Room Batch vs Floor Batch

our evaluation period might be more suitable because of the similar
seasonal weather condition. Thus, we use only the data from the
same season as an ablation.

Fig. 11 shows that a batch of the entire year’s data produces better
performance than only using the same season. A narrower distri-
bution of state-action visitation in a single season cannot update
the Q-value as accurately as an entire year’s data could. Incorrect
Q-value estimation would lead to a lower return. In summary, it is
essential to ensure enough state-action visitation diversity in the
batch data, in order to estimate the value more accurately.

4.8 Generalization Experiments
4.8.1 In-batch/Out-of-batch Experiment. To examine the gener-
alization of the BRL model, we test the learned policy on rooms
where no data exist in the batch. Fig. 12 shows that out-of-batch
(OOB) rooms cannot select proper actions to compensate for the
OAT fluctuation during the week. The reward curves follow the
OAT trend periodically, with clear peaks and valleys. This is rea-
sonable since different zones might respond differently under the
same VAV control action, due to the thermal dynamics in the HVAC
and distance from VAV to zones.

4.8.2 Room-specific/Floor-specific Experiment. We validate if a
room-specific policy is needed. Thus, we use room-specific batch
data as our expert policy and evaluate these same rooms. However,
in Fig. 13 we observe that although both floor and room models
yield consistent outcomes above the average. It is better to use
a specific room buffer for a better fit of the room/zone thermal
dynamics.

5 CONCLUSION AND FUTUREWORKS
Our simulator-free, multi-zone, BRL-based framework uses existing
data as prior knowledge to learn the optimal policy without setting
up complex, parameterized simulators. It saves energy compared
with the default rule-based control method and maintains thermal
comfort. To the best of our knowledge, our work is the first to im-
prove and implement state-of-the-art BRL methods on real building
HVAC control. We hope our research encourages domain experts
to adopt BRL for real-world problems.

To further improve our control framework, we will update our
building operation system to achieve a more frequent data writing
rate. This way, we could train the model for the same number of
time steps in a shorter time, hereby faster convergence of model.
In addition, we will include rooms of different functionality, e.g.
conference room, individual office, study area, in our evaluation to
create a more generalized model for HVAC control. Also, we could
expand the action spaces by including chilling system control and
economizers for more comprehensive optimization.

For methodology improvement, we plan to further investigate
model-based method in offline mode. Which uses dynamic models
to generate a model buffer, then the model buffer is also used to
update the BRL model.
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A APPENDIX
A.1 Experiments Details
A.1.1 Parameters. For researchers to better reproduce our results,
we provide the hyperparameters used in our experiments. For most
of the models, we follow their default settings unless otherwise
recommended. We do not fine-tune the hyperparameters of the BRL
algorithms and use the reported values in the literature [23, 32, 36],
and we keep the architecture of actor-critic networks for a fair com-
parison. Modifying the architecture or any detail of implementation
might lead to a large difference in performances. [26] In PQL, we
scale the maximum state VAE training steps according to the ratio
of PQL’s MuJoCo buffer size to our building buffer size. For all the
network architectures we follow the original setups. The details of
the hyperparameters are listed in Table 1.

Table 1: Hyperparameter Settings of evaluated methods
BCM BCQ BEAR PQL

𝛾 0.99 0.99 0.99 0.99
𝑁 100 100 100 100
𝜏 0.005 0.005 0.005 0.005
𝜆 0.75 0.75 0.75 0.75
Φ 0.05 0.05 – 0.1
𝛼𝑚 0.9 – – –
𝜏𝑚 0.03 – – –
clip value min. -1 – – –
backup – – – Q-max
QL noise – – – 0.15
𝑏 percentile – – – 2
max state VAE trainstep – – – 2𝑒4
Policy update version – – 0 –
MMD matching # samples – – 5 –
MMD sigma – – 20 –
Kernel type – – Laplacian –
Lagrange threshold – – 10 –
Distance type – – MMD –
𝛾 : discount factor, 𝑁 : mini-batch size, 𝜏 : target network update rate, 𝜆:
minimum weighting between two Q-networks, Φ: max perturbation on
action, 𝛼𝑚 : Munchausen scaling term, 𝜏𝑚 : entropy temperature, clip
value min.: minimum clipping value on Munchausen term

A.1.2 Data Monitored. In the evaluation processes, we monitored
all the states as time series to observe if there is any abnormality.
Also, to inspect how BRL methods optimize the target objectives.

As shown in Fig. 14, it is an example of how the thermal comforts
of historical weeks vary under rule-based control. Apparent peri-
odic patterns are observed which follow the OAT trends during the
week. It indicates that RBC cannot compensate the OAT variations
as BRL method (Fig. 8).

In Fig. 15, it shows the time series of the states observed during
BRL evaluation. Our BRL method BCM keep zone air temperature
setpoint (ZNT StPt) in a narrow range stably, thus, keep the zone
air temperature readings (ZNT) in a reasonable range to maintain
thermal comforts while no constraints are applied, which is different
from online RL methods where the range of actions are constrained
by human experts as hard rules.

Figure 14: An example of historical thermal comfort trends
in top-5 similar OAT weeks

Figure 15: States in BCM evaluation week

A.2 Experiment with safe minimum airflow
A.2.1 Motivation. Indoor environment and indoor gatherings present
a disease spreading risk as virus-laden aerosol lingers in indoor air
for hours at high concentrations [34] rather than being quickly dis-
persed and destroyed through UV (sun)light outdoors. Accumulated
exposure to viral load over time is an important risk determinant
for an individual to be infected [11]. In the context of the current
pandemic caused by the spreading of the SARS-CoV-2 virus that
causes COVID-19 disease, many efforts are underway to control
its spread for the public healthcare system to maintain its capacity
and reduce fatalities. We believe that a well-designed operation of
the HVAC system can be a critical means to reduce the likelihood
of spreading events by appropriately directing airflows. HVAC soci-
eties such as ASHRAE and REHVA have recommended high rates of
air circulation and an increased fraction of fresh air. This is typically
measured by air changes per hour, or ACH, in a given enclosed
space or the entire building. ACH is computed by the air volume
added to or removed from space in an hour divided by the total
volume of the space [55]. For air impurities removed by fresh air,
unit ACH is then a time constant that represents the rate of dilution
in infectious particles caused by the introduction of fresh-air [11].
ACH is increased primarily by increasing the ratio of fresh air and
the speed of airflow supplied to a given space. Typically, commercial
buildings are designed to achieve ACH levels of 3-5 whereas more
sensitive areas in hospital settings could be as high as 12 ACH [8].
Achieving a substantially high ACH level in a typical office building
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Figure 16: Reward comparison (considering safe airflow)

Figure 17: Energy, thermal comfort, and airflow comparison

is challenging due to the cooling capacity of the equipment [21],
and thus in our study, we seek to fulfill a minimum safe airflow
requirement.

A.2.2 Safe Airflow Level Guidelines. Various guidelines have been
issued by ASHRAE2, CDC3, and the European union REHVA4 on
building operation to lower the risk of getting infected by the respi-
ratory disease of the occupants through the air during the COVID-
19 pandemic. These guidelines provide detailed recommendations
regarding multiple aspects of building operation and share much in
common, including, but not limited to, use of high-rating minimum
efficiency reporting value (MERV) filters and/or UV-C lighting to
treat the return air, 24/7 HVAC operation, no use of recirculated air
(i.e. use 100% outside air), increased air change (ACH) rate during
occupancy.

While comprehensive, these recommendations are difficult to
implement altogether, if not completely impossible. The effects of
these measures and their implications on the building systems with
respect to energy consumption and occupants’ thermal comfort
still largely remain unclear to practitioners and residents. In our
work, we maintain a safe airflow level in the zones we evaluate
by requiring a minimum of 21.19 CFM per person (10L/s per per-
son) [45] airflow in a space, which satisfies ASHRAE’s, REHVA’s,
and CDC’s requirements.

A.2.3 Experiment Results. In Fig. 16, we compare several state-
of-the-art BRL methods as we did in our main experiments. The
minimum safe airflow is calculated with the people occupied in the
room, where we assume full occupancy.

2 https://tinyurl.com/yy8f5faq 3 https://tinyurl.com/y9lczbwp
4 https://tinyurl.com/yy8nzlmj

The state, action, environment setups are all the same as our
main experiments. Except for the reward function at time step 𝑡 is
calculated with the following equation:

𝑅𝑡 = −𝛼𝑅𝑒𝐿𝑈 ( |𝑇𝐶𝑡 |−𝑇𝐶𝑐 ) − 𝛽𝑠𝑆𝑢𝑝𝑡 − 𝛿𝑅𝑒𝐿𝑈 (𝐴𝑠𝑎𝑓 𝑒

𝑚𝑖𝑛
− 𝑠𝑆𝑢𝑝𝑡 ), (4)

In Eq.(4), 𝛼 , 𝛽 , 𝛿 are the weights balancing between different
objectives and could be tuned to meet specific goals, 𝑇𝐶𝑡 is the
thermal comfort index at time 𝑡 ,𝑇𝐶𝑐 is the requirement on thermal
comfort, 0.5, and 𝑠𝑆𝑢𝑝𝑡 is the supply airflow at the time 𝑡 , and we
assume each room is fully occupied, leading to a constant𝐴𝑠𝑎𝑓 𝑒

𝑚𝑖𝑛
for

each room based on the ACH requirement and number of people at
full occupancy. The ReLU (Rectified Linear Unit) activation function
is used here to penalize any thermal comfort index that is out of
the comfortable range and any airflow value that is lower than
minimum safe airflow.

The results are run with two stacks of rooms per algorithm. And
each stack of runs lasts approximately a week. The experiment
result motivates us to improve from BCQ, since it outperforms
the others in the real HVAC environments. The buffer is the same
as our main experiments with an entire year of records. And the
evaluation time period is from June 1st to June 14th, 2021.

To further analyze the improvements of the target objectives,
respectively. Fig. 17 shows the comparison of energy consumption,
thermal comfort, and airflow readings. In this figure, RBC value of
each category is normalized as one. We could observe that in sum-
mer OAT weeks, BRL methods could save more energy compared
with the results of our main experiments where evaluation is done
in the Fall. BCQ is with a 24 percent of energy reduction cf. RBC
due to a more efficient policy control with a more stable airflow
and thermal comfort, as the error bars shown in the figure.
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